Skip to content
Related Articles

Related Articles

Tensorflow.js tf.GraphModel Class

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 28 Jan, 2022

Introduction: Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. Tensorflow.js tf.GraphModel class is used to build an acyclic graph from SavedModel and made it inference execution. tf.GraphModel is created by tf.loadGraphModel() method.

Syntax: 

tf.loadGraphModel.Method(args);

Parameters: 

  • args: Different methods accept different parameters.

Returns: Different method returns different data values, etc.

Below we will see some of the examples of tf.GraphModel class:

Example 1: In this example, we will see executeAsync() method which is used to implement implication in favor of the model. It takes tensor as a parameter input and output node name as a string. It returns the promise of tensor.

Javascript




import * as tf from "@tensorflow/tfjs"
  
async function run(){
    
// Tensor input elements 
 const gfg_Url =
  
// Calling loadGraphModel() function  
 const gfg_Model = await tf.loadGraphModel(gfg_Url); 
  
// Inputs for the model 
 const gfg_shape = [1, 224, 224, 3];
 const gfg_Input = tf.zeros(gfg_shape);
  
// Calling executeAsync()  
 const gfg_result = await gfg_Model.executeAsync(gfg_Input); 
 gfg_result.print();
  
}
await run();

Output: 

Tensor
     [[-0.1800359, -0.4059841, 0.8190171, ..., -0.895331,
      -1.084169, 1.2912908],]

Example 2: In this example, we will see dispose() method which is used to dispose of the tensor. It doesn’t take any parameters. it returns void. 

Javascript




import * as tf from "@tensorflow/tfjs"
  
async function run(){
    
// Defining tensor input elements 
 const gfg_Url =
  
// Calling the loadGraphModel() function  
 const gfg_Model = await tf.loadGraphModel(gfg_Url); 
  
// Input for our function 
 const gfg_shape = [1, 224, 224, 3];
 const gfg_Input = tf.zeros(gfg_shape);
  
// Disposing our Tensor 
 const gfg_result = await gfg_Model.executeAsync(gfg_Input);
 gfg_result.dispose();
 console.log(gfg_result) ;
  
}
  
await run();

Output: 

Tensor is disposed.

Reference: https://js.tensorflow.org/api/latest/#class:GraphModel


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!