Skip to content
Related Articles

Related Articles

Tensorflow.js tf.Tensor class .bufferSync() Method

View Discussion
Improve Article
Save Article
Like Article
  • Difficulty Level : Expert
  • Last Updated : 22 Apr, 2022

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.

The tf.Tensor class.bufferSync() method is used to return a tf.TensorBuffer that holds the underlying data.

Syntax:

bufferSync()

Parameters:

  • It takes no parameters

Return Value: It returns tf.TensorBuffer

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
console.log(tf.tensor([1, 3, 5, 4, 2]).bufferSync())

Output:

{
  "dtype": "float32",
  "shape": [
    5
  ],
  "size": 5,
  "values": {
    "0": 1,
    "1": 3,
    "2": 5,
    "3": 4,
    "4": 2
  },
  "strides": []
}

Example 2:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
const a= tf.tensor2d([[0, 1], [2, 3]])
console.log(a.bufferSync())

Output:

{
  "dtype": "float32",
  "shape": [
    2,
    2
  ],
  "size": 4,
  "values": {
    "0": 0,
    "1": 1,
    "2": 2,
    "3": 3
  },
  "strides": [
    2
  ]
}

Reference: https://js.tensorflow.org/api/latest/#tf.Tensor.bufferSync

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!