Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.
The tf.initializers.heNormal() function draws samples from a truncated normal distribution centered on zero with stddev = sqrt(2 / fanIn) within [-limit, limit] where limit is sqrt(6 / fan_in). Note that the fanIn is the number of inputs in the tensor weight.
Syntax:
tf.initializers.heNormal(arguments)
Parameters:
- arguments: It is an object that contains seed (a number) which is the random number generator seed/number.
Returns value: It returns tf.initializers.Initializer
Example 1:
Javascript
import * as tf from "@tensorflow/tfjs"
const geek = tf.initializers.heNormal(7)
console.log(geek);
console.log( '\nIndividual values:\n' );
console.log(geek.scale);
console.log(geek.mode);
console.log(geek.distribution);
|
Output:
{
"scale": 2,
"mode": "fanIn",
"distribution": "normal"
}
Individual values:
2
fanIn
normal
Example 2:
Javascript
import * as tf from "@tensorflow/tfjs
const inputValue = tf.input({shape:[4]});
const funcValue = tf.initializers.heNormal(3)
const dense_layer_1 = tf.layers.dense({
units: 7,
activation: 'relu' ,
kernelInitialize: funcValue
});
const dense_layer_2 = tf.layers.dense({
units: 8,
activation: 'softmax'
});
const outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
const model = tf.model({
inputs: inputValue,
outputs: outputValue
});
model.predict(tf.ones([2, 4])).print();
|
Output:
Tensor
[[0.0802892, 0.1482767, 0.1004469, 0.1141223, 0.218376, 0.1217001, 0.139549, 0.0772399],
[0.0802892, 0.1482767, 0.1004469, 0.1141223, 0.218376, 0.1217001, 0.139549, 0.0772399]]
Reference: https://js.tensorflow.org/api/latest/#initializers.heNormal