Skip to content
Related Articles

Related Articles

Improve Article

Tensorflow.js tf.browser.fromPixelsAsync() Function

  • Last Updated : 18 May, 2021

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf.browser.fromPixelsAsync() function is used to create a Tensor of pixel values of a specified image in an async way.

Hey geek! The constant emerging technologies in the world of web development always keeps the excitement for this subject through the roof. But before you tackle the big projects, we suggest you start by learning the basics. Kickstart your web development journey by learning JS concepts with our JavaScript Course. Now at it's lowest price ever!

Syntax:

tf.browser.fromPixelsAsync (pixels, numChannels)

Parameters: This function accepts two parameters which are illustrated below.



  • pixels: It is the pixels of the input image from which the Tensor is going to be constructed. The supported image types are all 4-channel.
  • numchannels: It is the number of channels of the output Tensor. It’s default value is 3 and the upper limit is up to 4.

Return Value: This function returns the created Tensor of pixels values of the specified image.

Example 1:

Javascript




// Creating a image from some specified
// pixels values
const image = new ImageData(2, 2);
image.data[0] = 5;
image.data[1] = 10;
image.data[2] = 15;
image.data[3] = 20;
  
// Calling the .fromPixelsAsync() function 
// over the above image as its parameter
// without using numChannels value so
// it print only 3 pixles value as
// the default value of numchannels 
// parameter is 3
(await tf.browser.fromPixelsAsync(image)).print();

Output:

Tensor
   [[[5, 10, 15],
     [0, 0 , 0 ]],

    [[0, 0 , 0 ],
     [0, 0 , 0 ]]]

Example 2:

Javascript




// Creating a image from some specified
// pixels values
const image = new ImageData(1, 1);
image.data[0] = 5;
image.data[1] = 10;
image.data[2] = 15;
image.data[3] = 20;
  
// Calling the .fromPixelsAsync() function 
// over the above image as its parameter
// along with 4 value for numChannels parameter
(await tf.browser.fromPixelsAsync(image, 4)).print();

Output:

Tensor
    [ [[5, 10, 15, 20],]]

Reference:https://js.tensorflow.org/api/latest/#browser.fromPixelsAsync




My Personal Notes arrow_drop_up
Recommended Articles
Page :