Open In App
Related Articles

Sum of the series 1 + (1+3) + (1+3+5) + (1+3+5+7) + …… + (1+3+5+7+…+(2n-1))

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive integer n. The problem is to find the sum of the given series 1 + (1+2) + (1+2+3) + (1+2+3+4) + …… + (1+2+3+4+…+n), where i-th term in the series is the sum of first i odd natural numbers.

Examples:  

Input : n = 2
Output : 5
(1) + (1+3) = 5
Input : n = 5
Output : 55
(1) + (1+3) + (1+3+5) + (1+3+5+7) + (1+3+5+7+9) = 55 
Recommended Practice

Naive Approach: Using two loops get the sum of each i-th term and then add those sum to the final sum.

C++




// C++ implementation to find the
// sum of the given series
#include <bits/stdc++.h>
 
using namespace std;
 
// function to find the
// sum of the given series
int sumOfTheSeries(int n)
{
    int sum = 0;
    for (int i = 1; i <= n; i++) {
 
        // first term of each i-th term
        int k = 1;
        for (int j = 1; j <= i; j++) {
            sum += k;
 
            // next term
            k += 2;
        }
    }
 
    // required sum
    return sum;
}
 
// Driver program
int main()
{
    int n = 5;
    cout << "Sum = "
         << sumOfTheSeries(n);
    return 0;
}


Java




// Java implementation to find
// the sum of the given series
import java.util.*;
 
class GFG {
     
    // function to find the sum
    // of the given series
    static int sumOfTheSeries(int n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++)
        {
      
            // first term of each
            // i-th term
            int k = 1;
            for (int j = 1; j <= i; j++)
            {
                sum += k;
      
                // next term
                k += 2;
            }
        }
      
        // required sum
        return sum;
    }
 
    /* Driver program */
    public static void main(String[] args)
    {
         int n = 5;
         System.out.println("Sum = " +
                        sumOfTheSeries(n));
    }
}
 
// This code is contributed by Arnav Kr. Mandal.


Python3




# Python3 implementation to find
# the sum of the given series
 
# function to find the sum
# of the given series
 
 
def sumOfTheSeries(n):
    sum = 0
    for i in range(1, n + 1):
 
        # first term of each i-th term
        k = 1
        for j in range(1, i+1):
            sum += k
 
            # next term
            k += 2
 
    # required sum
    return sum
 
 
# Driver program
n = 5
print("Sum =", sumOfTheSeries(n))
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# implementation to find
// the sum of the given series
using System;
 
class GFG {
 
    // function to find the sum
    // of the given series
    static int sumOfTheSeries(int n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++) {
 
            // first term of each
            // i-th term
            int k = 1;
            for (int j = 1; j <= i; j++) {
                sum += k;
 
                // next term
                k += 2;
            }
        }
 
        // required sum
        return sum;
    }
 
    /* Driver program */
    public static void Main()
    {
        int n = 5;
        Console.Write("Sum = " +
                     sumOfTheSeries(n));
    }
}
 
// This code is contributed by vt_m.


php




<?php
 
// php implementation to find the
// sum of the given series
 
// function to find the
// sum of the given series
function sumOfTheSeries($n)
{
    $sum = 0;
    for ($i = 1; $i <= $n; $i++) {
  
        // first term of each i-th term
        $k = 1;
        for ($j = 1; $j <= $i; $j++) {
            $sum += $k;
  
            // next term
            $k += 2;
        }
    }
  
    // required sum
    return $sum;
}
  
// Driver program
    $n = 5;
    echo "Sum = "
         . sumOfTheSeries($n);
 
// This code is contributed by Sam007
?>


Javascript




<script>
 
// Javascript implementation to find the
// sum of the given series
 
// function to find the
// sum of the given series
function sumOfTheSeries(n)
{
    let sum = 0;
    for (let i = 1; i <= n; i++) {
  
        // first term of each i-th term
        let k = 1;
        for (let j = 1; j <= i; j++) {
            sum += k;
  
            // next term
            k += 2;
        }
    }
  
    // required sum
    return sum;
}
  
// Driver program
    let n = 5;
    document.write("Sum = " + sumOfTheSeries(n));
 
// This code is contributed by gfgking
 
</script>


Output: 

Sum = 55

Time complexity: O(n2)

Auxiliary space: O(1)

Efficient Approach: 

Let an be the n-th term of the given series. 

an = (1 + 3 + 5 + 7 + (2n-1))
   = sum of first n odd numbers
   = n2

Refer this post for proof of the above formula. Now,  

Refer this post for proof of the above formula. 

C++




// C++ implementation to find the sum
// of the given series
#include <bits/stdc++.h>
using namespace std;
 
// function to find the sum
// of the given series
int sumOfTheSeries(int n)
{
    // required sum
    return (n * (n + 1) / 2) * (2 * n + 1) / 3;
}
 
// Driver program to test above
int main()
{
    int n = 5;
    cout << "Sum = " << sumOfTheSeries(n);
    return 0;
}


Java




// Java implementation to find
// the sum of the given series
import java.io.*;
 
class GfG {
     
// function to find the sum
// of the given series
static int sumOfTheSeries(int n)
{
    // required sum
    return (n * (n + 1) / 2) *
            (2 * n + 1) / 3;
}
     
 
// Driver program to test above
public static void main (String[] args)
{
    int n = 5;
     
    System.out.println("Sum = "+
                sumOfTheSeries(n));
 
}
 
}
 
// This code is contributed by Gitanjali.


Python3




# Python3 implementation to find
# the sum of the given series
 
# function to find the sum
# of the given series
def sumOfTheSeries( n ):
     
    # required sum
    return int((n * (n + 1) / 2) *
            (2 * n + 1) / 3)
             
# Driver program to test above
n = 5
print("Sum =", sumOfTheSeries(n))
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# implementation to find
// the sum of the given series
using System;
 
class GfG {
 
    // function to find the sum
    // of the given series
    static int sumOfTheSeries(int n)
    {
        // required sum
        return (n * (n + 1) / 2) *
                      (2 * n + 1) / 3;
    }
 
    // Driver program to test above
    public static void Main()
    {
        int n = 5;
 
        Console.Write("Sum = " +
                   sumOfTheSeries(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP implementation to find the sum
// of the given series
 
// function to find the sum
// of the given series
function sumOfTheSeries($n)
{
     
    // required sum
    return ($n * ($n + 1) / 2) *
              (2 * $n + 1) / 3;
}
 
    // Driver Code
    $n = 5;
    echo "Sum = "
        . sumOfTheSeries($n);
         
// This code is contributed by Sam007
?>


Javascript




<script>
 
// JavaScript program to find
// the sum of the given series
 
// function to find the sum
    // of the given series
    function sumOfTheSeries(n)
    {
        // required sum
        return (n * (n + 1) / 2) *
                      (2 * n + 1) / 3;
    }
 
// Driver Code
 
        let n = 5;
   
        document.write("Sum = " +
                   sumOfTheSeries(n));
         
        // This code is contributed by avijitmondal1998.
</script>


Output: 

Sum = 55

Time complexity: O(1)

Auxiliary space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials