Sum of nodes in top view of binary tree

Top view of a binary tree is the set of nodes visible when the tree is viewed from the top. Given a binary tree, the task is to print the sum of nodes in top view.

Examples:

Input: 
       1
      /  \
     2    3
    / \    \
   4   5    6

Output: 16

Input:
       1
      /  \
    2      3
      \   
        4  
          \
            5
             \
               6

Output: 12

Approach: The idea is to put nodes of same horizontal distance together. We do a level order traversal so that the topmost node at a horizontal node is visited before any other node of same horizontal distance below it and we keep summing up their values and store the result in variable sum. Hashing is used to check if a node at given horizontal distance is seen or not.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Structure of binary tree
struct Node {
    Node* left;
    Node* right;
    int hd;
    int data;
};
  
// Function to create a new node
Node* newNode(int key)
{
    Node* node = new Node();
    node->left = node->right = NULL;
    node->data = key;
    return node;
}
  
// Function that returns the sum of
// nodes in top view of binary tree
int SumOfTopView(Node* root)
{
    if (root == NULL)
        return 0;
  
    queue<Node*> q;
  
    map<int, int> m;
    int hd = 0;
  
    root->hd = hd;
  
    int sum = 0;
  
    // Push node and horizontal distance to queue
    q.push(root);
  
    while (q.size()) {
        hd = root->hd;
  
        // Count function returns 1 if the container
        // contains an element whose key is equivalent
        // to hd, or returns zero otherwise.
        if (m.count(hd) == 0) {
            m[hd] = root->data;
            sum += m[hd];
        }
        if (root->left) {
            root->left->hd = hd - 1;
            q.push(root->left);
        }
        if (root->right) {
            root->right->hd = hd + 1;
            q.push(root->right);
        }
        q.pop();
        root = q.front();
    }
  
    return sum;
}
  
// Driver code
int main()
{
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->right = newNode(4);
    root->left->right->right = newNode(5);
    root->left->right->right->right = newNode(6);
  
    cout << SumOfTopView(root);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
class Sol
{
      
// Structure of binary tree
static class Node 
{
    Node left;
    Node right;
    int hd;
    int data;
};
  
// Function to create a new node
static Node newNode(int key)
{
    Node node = new Node();
    node.left = node.right = null;
    node.data = key;
    return node;
}
  
// Function that returns the sum of
// nodes in top view of binary tree
static int SumOfTopView(Node root)
{
    if (root == null)
        return 0;
  
    Queue<Node> q = new LinkedList<Node>();
  
    Map<Integer,Integer> m = new HashMap<Integer,Integer>();
    int hd = 0;
  
    root.hd = hd;
  
    int sum = 0;
  
    // Push node and horizontal distance to queue
    q.add(root);
  
    while (q.size() > 0
    {
        hd = root.hd;
  
        // Count function returns 1 if the container
        // contains an element whose key is equivalent
        // to hd, or returns zero otherwise.
        if (!m.containsKey(hd)) 
        {
            m.put(hd, root.data);
            sum += m.get(hd);
        }
        if (root.left != null
        {
            root.left.hd = hd - 1;
            q.add(root.left);
        }
        if (root.right != null
        {
            root.right.hd = hd + 1;
            q.add(root.right);
        }
        q.remove();
        if(q.size() > 0)
            root = q.peek();
    }
  
    return sum;
}
  
// Driver code
public static void main(String args[])
{
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.right = newNode(4);
    root.left.right.right = newNode(5);
    root.left.right.right.right = newNode(6);
  
    System.out.print(SumOfTopView(root));
}
}
  
// This code is contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
from collections import defaultdict
  
class Node: 
      
    def __init__(self, key):
        self.data = key
        self.hd = None
        self.left = None
        self.right = None
  
# Function that returns the sum of
# nodes in top view of binary tree
def SumOfTopView(root):
  
    if root == None:
        return 0
  
    q = []
  
    m = defaultdict(lambda:0)
    hd, Sum = 0, 0
  
    root.hd = hd
  
    # Push node and horizontal
    # distance to queue
    q.append(root)
  
    while len(q) > 0:
        hd = root.hd
  
        # Count function returns 1 if 
        # the container contains an 
        # element whose key is equivalent
        # to hd, or returns zero otherwise.
        if m[hd] == 0
            m[hd] = root.data
            Sum += m[hd]
          
        if root.left != None
            root.left.hd = hd - 1
            q.append(root.left)
          
        if root.right != None
            root.right.hd = hd + 1
            q.append(root.right)
          
        q.pop(0)
        if len(q) > 0:
            root = q[0]
      
    return Sum
  
# Driver code
if __name__ == "__main__":
  
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.right = Node(4)
    root.left.right.right = Node(5)
    root.left.right.right.right = Node(6)
  
    print(SumOfTopView(root))
  
# This code is contributed by Rituraj Jain

chevron_right


Output:

12


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain, andrew1234



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.