# Sum of nodes in the right view of the given binary tree

Given a binary tree, the task is to find the sum of the nodes which are visible in the right view. The right view of a binary tree is the set of nodes visible when the tree is viewed from the right.

Examples:

```Input:
1
/  \
2    3
/ \    \
4   5    6
Output: 10
1 + 3 + 6 = 10

Input:
1
/  \
2      3
\
4
\
5
\
6
Output: 19
```

Approach: The problem can be solved using simple recursive traversal. We can keep track of the level of a node by passing a parameter to all the recursive calls. The idea is to keep track of the maximum level also and traverse the tree in a manner that the right subtree is visited before the left subtree. Whenever a node whose level is more than the maximum level so far is encountered, add the value of the node to the sum because it is the last node in its level (Note that the right subtree is traversed before the left subtree).

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `class` `Node { ` `public``: ` `    ``int` `data; ` `    ``Node *left, *right; ` `}; ` ` `  `// A utility function to create ` `// a new Binary Tree Node ` `Node* newNode(``int` `item) ` `{ ` `    ``Node* temp = ``new` `Node(); ` `    ``temp->data = item; ` `    ``temp->left = temp->right = NULL; ` `    ``return` `temp; ` `} ` ` `  `// Recursive function to find the sum of nodes ` `// of the right view of the given binary tree ` `void` `sumRightViewUtil(Node* root, ``int` `level, ` `                      ``int``* max_level, ``int``* sum) ` `{ ` `    ``// Base Case ` `    ``if` `(root == NULL) ` `        ``return``; ` ` `  `    ``// If this is the last Node of its level ` `    ``if` `(*max_level < level) { ` `        ``*sum += root->data; ` `        ``*max_level = level; ` `    ``} ` ` `  `    ``// Recur for left and right subtrees ` `    ``sumRightViewUtil(root->right, level + 1, max_level, sum); ` `    ``sumRightViewUtil(root->left, level + 1, max_level, sum); ` `} ` ` `  `// A wrapper over sumRightViewUtil() ` `void` `sumRightView(Node* root) ` `{ ` `    ``int` `max_level = 0; ` `    ``int` `sum = 0; ` `    ``sumRightViewUtil(root, 1, &max_level, &sum); ` `    ``cout << sum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``Node* root = newNode(12); ` `    ``root->left = newNode(10); ` `    ``root->right = newNode(30); ` `    ``root->right->left = newNode(25); ` `    ``root->right->right = newNode(40); ` ` `  `    ``sumRightView(root); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `// Class for a node of the tree ` `class` `Node { ` `    ``int` `data; ` `    ``Node left, right; ` ` `  `    ``public` `Node(``int` `item) ` `    ``{ ` `        ``data = item; ` `        ``left = right = ``null``; ` `    ``} ` `} ` ` `  `class` `BinaryTree { ` `    ``Node root; ` `    ``static` `int` `max_level = ``0``; ` `    ``static` `int` `sum = ``0``; ` ` `  `    ``// Recursive function to find the sum of nodes ` `    ``// of the right view of the given binary tree ` `    ``void` `sumRightViewUtil(Node node, ``int` `level) ` `    ``{ ` `        ``// Base Case ` `        ``if` `(node == ``null``) ` `            ``return``; ` ` `  `        ``// If this is the last node of its level ` `        ``if` `(max_level < level) { ` `            ``sum += node.data; ` `            ``max_level = level; ` `        ``} ` ` `  `        ``// Recur for left and right subtrees ` `        ``sumRightViewUtil(node.right, level + ``1``); ` `        ``sumRightViewUtil(node.left, level + ``1``); ` `    ``} ` ` `  `    ``// A wrapper over sumRightViewUtil() ` `    ``void` `sumRightView() ` `    ``{ ` ` `  `        ``sumRightViewUtil(root, ``1``); ` `        ``System.out.print(sum); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` ` `  `        ``BinaryTree tree = ``new` `BinaryTree(); ` `        ``tree.root = ``new` `Node(``12``); ` `        ``tree.root.left = ``new` `Node(``10``); ` `        ``tree.root.right = ``new` `Node(``30``); ` `        ``tree.root.right.left = ``new` `Node(``25``); ` `        ``tree.root.right.right = ``new` `Node(``40``); ` ` `  `        ``tree.sumRightView(); ` `    ``} ` `} `

## Python3

 `# Python3 implementation of the approach ` ` `  `# A binary tree node  ` `class` `Node:  ` ` `  `    ``# Constructor to create a new node  ` `    ``def` `__init__(``self``, data):  ` `        ``self``.data ``=` `data  ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` ` `  ` `  `# Recursive function to find the sum of nodes  ` `# of the right view of the given binary tree ` `def` `sumRightViewUtil(root, level, max_level, ``sum``):  ` `     `  `    ``# Base Case  ` `    ``if` `root ``is` `None``:  ` `        ``return` ` `  `    ``# If this is the last node of its level  ` `    ``if` `(max_level[``0``] < level):  ` `        ``sum``[``0``]``+``=` `root.data  ` `        ``max_level[``0``] ``=` `level  ` ` `  `    ``# Recur for left and right subtree  ` `    ``sumRightViewUtil(root.right, level ``+` `1``, max_level, ``sum``)  ` `    ``sumRightViewUtil(root.left, level ``+` `1``, max_level, ``sum``)  ` `     `  ` `  `# A wrapper over sumRightViewUtil()  ` `def` `sumRightView(root):  ` `    ``max_level ``=` `[``0``]  ` `    ``sum` `=``[``0``] ` `    ``sumRightViewUtil(root, ``1``, max_level, ``sum``)  ` `    ``print``(``sum``[``0``]) ` ` `  ` `  `# Driver code ` `root ``=` `Node(``12``)  ` `root.left ``=` `Node(``10``)  ` `root.right ``=` `Node(``30``)  ` `root.right.left ``=` `Node(``25``)  ` `root.right.right ``=` `Node(``40``)  ` `sumRightView(root) `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `// Class for a node of the tree ` `public` `class` `Node { ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` ` `  `    ``public` `Node(``int` `item) ` `    ``{ ` `        ``data = item; ` `        ``left = right = ``null``; ` `    ``} ` `} ` ` `  `public` `class` `BinaryTree { ` `    ``public` `Node root; ` `    ``public` `static` `int` `max_level = 0; ` `    ``public` `static` `int` `sum = 0; ` ` `  `    ``// Recursive function to find the sum of nodes ` `    ``// of the right view of the given binary tree ` `    ``public` `virtual` `void` `sumrightViewUtil(Node node, ``int` `level) ` `    ``{ ` `        ``// Base Case ` `        ``if` `(node == ``null``) { ` `            ``return``; ` `        ``} ` ` `  `        ``// If this is the last node of its level ` `        ``if` `(max_level < level) { ` `            ``sum += node.data; ` `            ``max_level = level; ` `        ``} ` ` `  `        ``// Recur for left and right subtrees ` `        ``sumrightViewUtil(node.right, level + 1); ` `        ``sumrightViewUtil(node.left, level + 1); ` `    ``} ` ` `  `    ``// A wrapper over sumrightViewUtil() ` `    ``public` `virtual` `void` `sumrightView() ` `    ``{ ` `        ``sumrightViewUtil(root, 1); ` `        ``Console.Write(sum); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(``string``[] args) ` `    ``{ ` `        ``BinaryTree tree = ``new` `BinaryTree(); ` `        ``tree.root = ``new` `Node(12); ` `        ``tree.root.left = ``new` `Node(10); ` `        ``tree.root.right = ``new` `Node(30); ` `        ``tree.root.right.left = ``new` `Node(25); ` `        ``tree.root.right.right = ``new` `Node(40); ` ` `  `        ``tree.sumrightView(); ` `    ``} ` `} `

Output:

```82
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.