
Given a number n, find sum of first n natural numbers. To calculate the sum, we will use a recursive function recur_sum().
Examples :
Input : 3
Output : 6
Explanation : 1 + 2 + 3 = 6
Input : 5
Output : 15
Explanation : 1 + 2 + 3 + 4 + 5 = 15
Below is code to find the sum of natural numbers up to n using recursion :
C++
#include <iostream>
using namespace std;
int recurSum( int n)
{
if (n <= 1)
return n;
return n + recurSum(n - 1);
}
int main()
{
int n = 5;
cout << recurSum(n);
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
class GFG
{
public static int recurSum( int n)
{
if (n <= 1 )
return n;
return n + recurSum(n - 1 );
}
public static void main(String args[])
{
int n = 5 ;
System.out.println(recurSum(n));
}
}
|
Python
def recurSum(n):
if n < = 1 :
return n
return n + recurSum(n - 1 )
n = 5
print (recurSum(n))
|
C#
using System;
class GFG
{
public static int recurSum( int n)
{
if (n <= 1)
return n;
return n + recurSum(n - 1);
}
public static void Main()
{
int n = 5;
Console.WriteLine(recurSum(n));
}
}
|
PHP
<?php
function recurSum( $n )
{
if ( $n <= 1)
return $n ;
return $n + recurSum( $n - 1);
}
$n = 5;
echo (recurSum( $n ));
?>
|
Javascript
<script>
function recurSum(n)
{
if (n <= 1)
return n;
return n + recurSum(n - 1);
}
let n = 5;
document.write(recurSum(n));
</script>
|
Output :
15
Time complexity : O(n)
Auxiliary space : O(n)
To solve this question , iterative approach is the best approach because it takes constant or O(1) auxiliary space and the time complexity will be same O(n).