Open In App
Related Articles

Practice Questions for Recursion | Set 7

Improve Article
Improve
Save Article
Save
Like Article
Like

Question 1 Predict the output of the following program. What does the following fun() do in general? 

C++




#include <iostream>
using namespace std;
  
int fun(int n, int* fp)
{
    int t, f;
  
    if (n <= 2) {
        *fp = 1;
        return 1;
    }
    t = fun(n - 1, fp);
    f = t + *fp;
    *fp = t;
    return f;
}
  
int main()
{
    int x = 15;
    cout << fun(5, &x) << endl;
    return 0;
}


C




#include <stdio.h>
  
int fun(int n, int* fp)
{
    int t, f;
  
    if (n <= 2) {
        *fp = 1;
        return 1;
    }
    t = fun(n - 1, fp);
    f = t + *fp;
    *fp = t;
    return f;
}
  
int main()
{
    int x = 15;
    printf("%d\n", fun(5, &x));
  
    return 0;
}


Java




import java.io.*;
  
class GFG {
    static int fp = 15;
    static int fun(int n)
    {
        int t, f;
  
        if (n <= 2) {
            fp = 1;
            return 1;
        }
        t = fun(n - 1);
        f = t + fp;
        fp = t;
        return f;
    }
    public static void main(String[] args)
    {
        System.out.println(fun(5));
    }
}
// This code is contributed by shubhamsingh10


Python3




fp = 15
  
  
def fun(n):
    global fp
    if (n <= 2):
        fp = 1
        return 1
  
    t = fun(n - 1)
    f = t + fp
    fp = t
    return f
  
# Driver code
  
  
print(fun(5))
  
# This code is contributed by shubhamsingh10


C#




using System;
  
class GFG {
    static int fp = 15;
    static int fun(int n)
    {
        int t, f;
  
        if (n <= 2) {
            fp = 1;
            return 1;
        }
        t = fun(n - 1);
        f = t + fp;
        fp = t;
        return f;
    }
  
    static public void Main() { Console.Write(fun(5)); }
}
// This code is contributed by shubhamsingh10


Javascript




<script>
//Javascript Implementation
var fp = 15;
function fun( n )
{
    var t, f;
   
    if ( n <= 2 )
    {
        fp = 1;
        return 1;
    }
    t = fun ( n - 1 );
    f = t + fp;
    fp = t;
    return f;
}
  
// Driver Code
  
document.write(fun(5));
  
// This code is contributed by shubhamsingh10
  
</script>


Output

5

Time complexity: O(n)
Auxiliary Space: O(1) 

The program calculates n-th Fibonacci Number. The statement t = fun ( n-1, fp ) gives the (n-1)th Fibonacci number and *fp is used to store the (n-2)th Fibonacci Number. The initial value of *fp (which is 15 in the above program) doesn’t matter. The following recursion tree shows all steps from 1 to 10, for the execution of fun(5, &x). 

                              (1) fun(5, fp)
                              /           \
                         (2) fun(4, fp)   (8) t = 3, f = 5, *fp = 3
                         /          \
                   (3) fun(3, fp)    (7) t = 2, f = 3, *fp = 2
                  /            \
              (4) fun(2, fp)   (6) t = 1, f = 2, *fp = 1
             /   
      (5) *fp = 1   

Question 2: Predict the output of the following program. 

C++




#include <iostream>
using namespace std;
void fun(int n)
{
    if (n > 0) {
        fun(n - 1);
        cout << n << " ";
        fun(n - 1);
    }
}
  
int main()
{
    fun(4);
    return 0;
}
  
// This code is contributed by shubhamsingh10


C




#include <stdio.h>
  
void fun(int n)
{
    if (n > 0) {
        fun(n - 1);
        printf("%d ", n);
        fun(n - 1);
    }
}
  
int main()
{
    fun(4);
    return 0;
}


Java




import java.util.*;
  
class GFG {
    static void fun(int n)
    {
        if (n > 0) {
            fun(n - 1);
            System.out.print(n + " ");
            fun(n - 1);
        }
    }
  
    public static void main(String[] args) { fun(4); }
}
// This code is contributed by Shubhamsingh10


Python3




def fun(n):
  
    if(n > 0):
        fun(n - 1)
        print(n, end=" ")
        fun(n - 1)
  
# driver code
  
  
fun(4)
  
# This code is contributed by shubhamsingh10


C#




using System;
  
class GFG {
    static void fun(int n)
    {
        if (n > 0) {
            fun(n - 1);
            Console.Write(n + " ");
            fun(n - 1);
        }
    }
  
    static public void Main() { fun(4); }
}
  
// This code is contributed by shubhamsingh10


Javascript




<script>
function fun(n)
{
    if(n > 0)
        fun(n - 1);
        document.write(n+" ")
        fun(n - 1); 
}
  
// driver code
fun(4)
  
// This code is contributed by bobby.
</script>


Output

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

Time complexity: O(n)
Auxiliary Space: O(1) 
 

                     fun(4)
                   /
                fun(3), print(4), fun(3) [fun(3) prints 1 2 1 3 1 2 1]
               /
           fun(2), print(3), fun(2) [fun(2) prints 1 2 1]
           /
       fun(1), print(2), fun(1) [fun(1) prints 1]
       /
    fun(0), print(1), fun(0) [fun(0) does nothing]

Please write comments if you find any of the answers/codes incorrect, or you want to share more information/questions about the topics discussed above.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 20 Feb, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials