Question 1 Predict the output of the following program. What does the following fun() do in general?
C++
#include <iostream>
using namespace std;
int fun( int n, int * fp)
{
int t, f;
if (n <= 2) {
*fp = 1;
return 1;
}
t = fun(n - 1, fp);
f = t + *fp;
*fp = t;
return f;
}
int main()
{
int x = 15;
cout << fun(5, &x) << endl;
return 0;
}
|
C
#include <stdio.h>
int fun( int n, int * fp)
{
int t, f;
if (n <= 2) {
*fp = 1;
return 1;
}
t = fun(n - 1, fp);
f = t + *fp;
*fp = t;
return f;
}
int main()
{
int x = 15;
printf ( "%d\n" , fun(5, &x));
return 0;
}
|
Java
import java.io.*;
class GFG {
static int fp = 15 ;
static int fun( int n)
{
int t, f;
if (n <= 2 ) {
fp = 1 ;
return 1 ;
}
t = fun(n - 1 );
f = t + fp;
fp = t;
return f;
}
public static void main(String[] args)
{
System.out.println(fun( 5 ));
}
}
|
Python3
fp = 15
def fun(n):
global fp
if (n < = 2 ):
fp = 1
return 1
t = fun(n - 1 )
f = t + fp
fp = t
return f
print (fun( 5 ))
|
C#
using System;
class GFG {
static int fp = 15;
static int fun( int n)
{
int t, f;
if (n <= 2) {
fp = 1;
return 1;
}
t = fun(n - 1);
f = t + fp;
fp = t;
return f;
}
static public void Main() { Console.Write(fun(5)); }
}
|
Javascript
<script>
var fp = 15;
function fun( n )
{
var t, f;
if ( n <= 2 )
{
fp = 1;
return 1;
}
t = fun ( n - 1 );
f = t + fp;
fp = t;
return f;
}
document.write(fun(5));
</script>
|
Time complexity: O(n)
Auxiliary Space: O(1)
The program calculates n-th Fibonacci Number. The statement t = fun ( n-1, fp ) gives the (n-1)th Fibonacci number and *fp is used to store the (n-2)th Fibonacci Number. The initial value of *fp (which is 15 in the above program) doesn’t matter. The following recursion tree shows all steps from 1 to 10, for the execution of fun(5, &x).
(1) fun(5, fp)
/ \
(2) fun(4, fp) (8) t = 3, f = 5, *fp = 3
/ \
(3) fun(3, fp) (7) t = 2, f = 3, *fp = 2
/ \
(4) fun(2, fp) (6) t = 1, f = 2, *fp = 1
/
(5) *fp = 1
Question 2: Predict the output of the following program.
C++
#include <iostream>
using namespace std;
void fun( int n)
{
if (n > 0) {
fun(n - 1);
cout << n << " " ;
fun(n - 1);
}
}
int main()
{
fun(4);
return 0;
}
|
C
#include <stdio.h>
void fun( int n)
{
if (n > 0) {
fun(n - 1);
printf ( "%d " , n);
fun(n - 1);
}
}
int main()
{
fun(4);
return 0;
}
|
Java
import java.util.*;
class GFG {
static void fun( int n)
{
if (n > 0 ) {
fun(n - 1 );
System.out.print(n + " " );
fun(n - 1 );
}
}
public static void main(String[] args) { fun( 4 ); }
}
|
Python3
def fun(n):
if (n > 0 ):
fun(n - 1 )
print (n, end = " " )
fun(n - 1 )
fun( 4 )
|
C#
using System;
class GFG {
static void fun( int n)
{
if (n > 0) {
fun(n - 1);
Console.Write(n + " " );
fun(n - 1);
}
}
static public void Main() { fun(4); }
}
|
Javascript
<script>
function fun(n)
{
if (n > 0)
fun(n - 1);
document.write(n+ " " )
fun(n - 1);
}
fun(4)
</script>
|
Output
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
Time complexity: O(n)
Auxiliary Space: O(1)
fun(4)
/
fun(3), print(4), fun(3) [fun(3) prints 1 2 1 3 1 2 1]
/
fun(2), print(3), fun(2) [fun(2) prints 1 2 1]
/
fun(1), print(2), fun(1) [fun(1) prints 1]
/
fun(0), print(1), fun(0) [fun(0) does nothing]
Please write comments if you find any of the answers/codes incorrect, or you want to share more information/questions about the topics discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
20 Feb, 2023
Like Article
Save Article