Skip to content
Related Articles

Related Articles

Improve Article

Difference between sum of the squares of first n natural numbers and square of sum

  • Difficulty Level : Easy
  • Last Updated : 31 Mar, 2021

Given an integer n, find the absolute difference between sum of the squares of first n natural numbers and square of sum of first n natural numbers.
Examples : 
 

Input : n = 3
Output : 22.0
Sum of first three numbers is 3 + 2 + 1 = 6
Square of the sum =  36
Sum of squares of first three is 9 + 4 + 1 = 14
Absolute difference = 36 - 14 = 22

Input : n = 10
Output : 2640.0

Asked in : biwhiz Company 
 

Approach : 
1. Find the sum of square of first n natural numbers. 
2. Find the sum of first n numbers and square it. 
3. Find the absolute difference between both the sums and print it.
Below is the implementation of above approach : 
 

C++




// C++ program to find the difference
// between sum of the squares of the
// first n natural numbers and square
// of sum of first n natural number
#include <bits/stdc++.h>
using namespace std;
 
int Square_Diff(int n){
 
int l, k, m;
 
    // Sum of the squares of the
    // first n natural numbers is
    l = (n * (n + 1) * (2 * n + 1)) / 6;
     
    // Sum of n naturals numbers
    k = (n * (n + 1)) / 2;
 
    // Square of k
    k = k * k;
     
    // Differences between l and k
    m = abs(l - k);
     
    return m;
 
}
 
// Driver Code
int main()
{
    int n = 10;
    cout << Square_Diff(n);
    return 0;
     
}
 
// This code is contributed by 'Gitanjali' .

Java




// Java program to find the difference
// between sum of the squares of the
// first n natural numbers and square
// of sum of first n natural number
 
public class GfG{
 
static int Square_Diff(int n){
 
int l, k, m;
    // Sum of the squares of the
    // first n natural numbers is
    l = (n * (n + 1) * (2 * n + 1)) / 6;
     
    // Sum of n naturals numbers
    k = (n * (n + 1)) / 2;
 
    // Square of k
    k = k * k;
     
    // Differences between l and k
    m = Math.abs(l - k);
     
    return m;
 
}
 
// Driver Code
public static void main(String s[])
{
    int n = 10;
    System.out.println(Square_Diff(n));    
     
}
}
// This code is contributed by 'Gitanjali'.

Python




# Python3 program to find the difference
# between sum of the squares of the
# first n natural numbers and square
# of sum of first n natural number
 
def Square_Diff(n):
 
    # sum of the squares of the
    # first n natural numbers is
    l = (n * (n + 1) * (2 * n + 1)) / 6
     
    # sum of n naturals numbers
    k = (n * (n + 1)) / 2
 
    # square of k
    k = k ** 2
     
    # Differences between l and k
    m = abs(l - k)
     
    return m
 
# Driver code
print(Square_Diff(10))

C#] 



<?php
// PHP program to find the difference
// between sum of the squares of the
// first n natural numbers and square
// of sum of first n natural number

function Square_Diff($n)
{

    $l; 
    $k; 
    $m;

    // Sum of the squares of the
    // first n natural numbers is
    $l = ($n * ($n + 1) * 
         (2 * $n + 1)) / 6;
    
    // Sum of n naturals numbers
    $k = ($n * ($n + 1)) / 2;

    // Square of k
    $k = $k * $k;
    
    // Differences between 
    // l and k
    $m = abs($l - $k);
    
    return $m;

}

    // Driver Code
    $n = 10;
    echo Square_Diff($n);

// This code is contributed by anuj_67 .
?>


Javascript






<script>
// javascript program to find the difference
// between sum of the squares of the
// first n natural numbers and square
// of sum of first n natural number
function Square_Diff(n){
 
var l, k, m;
 
    // Sum of the squares of the
    // first n natural numbers is
    l = (n * (n + 1) * (2 * n + 1)) / 6;
     
    // Sum of n naturals numbers
    k = (n * (n + 1)) / 2;
 
    // Square of k
    k = k * k;
     
    // Differences between l and k
    m = Math.abs(l - k);
    return m;
}
 
// Driver Code
var n = 10;
document.write(Square_Diff(n));
 
// This code is contributed by Princi Singh
</script>

Output : 

2640

 

Attention reader! Don’t stop learning now. Participate in the Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :