Sum of minimum elements of all possible sub-arrays of an array

Given an array arr[], the task is to find the sum of the minimum elements of every possible sub-array of the array.

Examples:

Input: arr[] = {1, 3, 2}
Output: 15
All possible sub-arrays are {1}, {2}, {3}, {1, 3}, {3, 2} and {1, 3, 2}
And, the sum of all the minimum elements is 1 + 2 + 3 + 1 + 2 + 1 = 10

Input: arr[] = {3, 1}
Output: 5

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple method is to generate all the sub-arrays and then sum the minimum elements in all of them. The time complexity of this solution will be O(n3).

Better method:
The key for optimization is the question-

In how many segments, the value at an index will be minimum?

The next idea that might come into our mind will be for every index i in the array arr, we try to find:
Left count: We iterate towards left of the index i till we don’t encounter an element strictly lesser than arr[i] or we don’t reach the left end of the array. Let us call this count for the index i of the given array as CLi.
Right count: We iterate towards right of the index till we don’t encounter an element less than or equal to the value at the index or we don’t reach the right end. Let us call this count for the index i of the given array as CRi.

(CLi + 1) * (CRi + 1) will be the number of sub-arrays for the current index i in which its value will be minimum because there are CLi + 1 ways to choose elements from left side (including choosing no element) and CRi + 1 ways to choose elements from the right side.

The time complexity of this approach will be O(n2)

Best method:
This problem can be solved using stack data structure in O(n) time. The idea remains the same as is in the previous approach. For the sake of saving some time, we will use stack from the Standard Template Library of C++.

Left count: Let CLi represent the left count for an index i. CLi for an index i can be defined as the number of elements between the index i and the right most element whose value is strictly less than arr[i] having index less than i. If, there is no such element, then CLi for an element will be equal to the number of elements to the left of the index i.

To achieve this, we will insert only the index of the elements from left to right into the stack. Let us suppose, we are inserting an index i in the stack and j be the index of the topmost element currently present in the stack. While the value arr[i] is less than or equal to the value at the top most index in the stack and the stack is not empty, keep popping the elements in the stack. Whenever, an element is popped, the left count(CLi) of the current index(i) is updated as CLi = CLi + CLj + 1.

Right count: We calculate the right count for all the indexes in the similar way. The only difference is we push the elements in stack while traversing right to left in the array. While arr[i] is strictly less than the value at the top most index in the stack and the stack is not empty, keep popping the elements. Whenever, an element is popped, the right count of the current index(i) is updated as CRi = CRi + CRj + 1.

Final step: Let ans be the variable containing the final answer. We will initialize it with 0. Then, we will iterate through all the indexes from 1 to n of the array and update the ans as ans = ans + (CLi + 1) * (CRi + 1) * arr[i] for all possible values of i from 1 to n.

Below is the implementation of the above approach:

C++

 // C++ implementation of the approach #include #include using namespace std;    // Function to return the required sum int findMinSum(int arr[], int n) {     // Arrays for maintaining left and right count     int CL[n] = { 0 }, CR[n] = { 0 };        // Stack for storing the indexes     stack q;        // Calculate left count for every index     for (int i = 0; i < n; i++) {         while (q.size() != 0 && arr[q.top()] >= arr[i]) {             CL[i] += CL[q.top()] + 1;             q.pop();         }         q.push(i);     }        // Clear the stack     while (q.size() != 0)         q.pop();        // Calculate right count for every index     for (int i = n - 1; i >= 0; i--) {         while (q.size() != 0 && arr[q.top()] > arr[i]) {             CR[i] += CR[q.top()] + 1;             q.pop();         }         q.push(i);     }        // Clear the stack     while (q.size() != 0)         q.pop();        // To store the required sum     int ans = 0;        // Calculate the final sum     for (int i = 0; i < n; i++)         ans += (CL[i] + 1) * (CR[i] + 1) * arr[i];        return ans; }    // Driver code int main() {     int arr[] = { 1, 3, 2 };     int n = sizeof(arr) / sizeof(arr);     cout << findMinSum(arr, n); }

Java

 // Java implementation of the above approach  import java.util.*;    class GFG  {    // Function to return the required sum static int findMinSum(int arr[], int n) {     // Arrays for maintaining left and right count     int CL[] = new int[n], CR[] = new int[n];        // Stack for storing the indexes     Stack q = new Stack();        // Calculate left count for every index     for (int i = 0; i < n; i++)      {         while (q.size() != 0 && arr[q.peek()] >= arr[i])          {             CL[i] += CL[q.peek()] + 1;             q.pop();         }         q.push(i);     }        // Clear the stack     while (q.size() != 0)         q.pop();        // Calculate right count for every index     for (int i = n - 1; i >= 0; i--)      {         while (q.size() != 0 && arr[q.peek()] > arr[i])          {             CR[i] += CR[q.peek()] + 1;             q.pop();         }         q.push(i);     }        // Clear the stack     while (q.size() != 0)         q.pop();        // To store the required sum     int ans = 0;        // Calculate the final sum     for (int i = 0; i < n; i++)         ans += (CL[i] + 1) * (CR[i] + 1) * arr[i];        return ans; }    // Driver code public static void main(String[] args)  {     int arr[] = { 1, 3, 2 };     int n = arr.length;     System.out.println(findMinSum(arr, n)); } }    // This code is contributed by Rajput-Ji

Python3

 # Python3 implementation of the approach     # Function to return the required sum  def findMinSum(arr, n):         # Arrays for maintaining left and     # right count      CL =  * n     CR =  * n         # Stack for storing the indexes      q = []        # Calculate left count for every index      for i in range(0, n):          while (len(q) != 0 and                 arr[q[-1]] >= arr[i]):              CL[i] += CL[q[-1]] + 1             q.pop()                     q.append(i)         # Clear the stack      while len(q) != 0:          q.pop()         # Calculate right count for every index      for i in range(n - 1, -1, -1):          while (len(q) != 0 and                 arr[q[-1]] > arr[i]):              CR[i] += CR[q[-1]] + 1             q.pop()                     q.append(i)         # Clear the stack      while len(q) != 0:          q.pop()         # To store the required sum      ans = 0        # Calculate the final sum      for i in range(0, n):          ans += (CL[i] + 1) * (CR[i] + 1) * arr[i]         return ans     # Driver code  if __name__ == "__main__":        arr = [1, 3, 2]      n = len(arr)      print(findMinSum(arr, n))        # This code is contributed by Rituraj Jain

C#

 // C# implementation of the above approach  using System; using System.Collections.Generic;    class GFG  {    // Function to return the required sum static int findMinSum(int []arr, int n) {     // Arrays for maintaining left and right count     int []CL = new int[n];     int []CR = new int[n];        // Stack for storing the indexes     Stack q = new Stack();        // Calculate left count for every index     for (int i = 0; i < n; i++)      {         while (q.Count != 0 && arr[q.Peek()] >= arr[i])          {             CL[i] += CL[q.Peek()] + 1;             q.Pop();         }         q.Push(i);     }        // Clear the stack     while (q.Count != 0)         q.Pop();        // Calculate right count for every index     for (int i = n - 1; i >= 0; i--)      {         while (q.Count != 0 && arr[q.Peek()] > arr[i])          {             CR[i] += CR[q.Peek()] + 1;             q.Pop();         }         q.Push(i);     }        // Clear the stack     while (q.Count != 0)         q.Pop();        // To store the required sum     int ans = 0;        // Calculate the final sum     for (int i = 0; i < n; i++)         ans += (CL[i] + 1) * (CR[i] + 1) * arr[i];        return ans; }    // Driver code public static void Main(String[] args)  {     int []arr = { 1, 3, 2 };     int n = arr.Length;     Console.WriteLine(findMinSum(arr, n)); } }    // This code has been contributed // by 29AjayKumar

Output:

10

Time complexity: O(n)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.