Skip to content
Related Articles

Related Articles

Improve Article
Minimum LCM and GCD possible among all possible sub-arrays
  • Difficulty Level : Easy
  • Last Updated : 14 Apr, 2021

Given an array arr[] of N positive integers, the task is to find the minimum LCM and GCD between elements of all possible sub-array.
Examples: 
 

Input: arr[] = {4, 4, 8} 
Output: LCM = 4, GCD = 4 
All possible sub-arrays are: 
{4} -> LCM = 4, GCD = 4 
{8} -> LCM = 8, GCD = 8 
{4, 8} -> LCM = 8, GCD = 4
Input: arr[] = {2, 66, 14, 521} 
Output: LCM = 2, GCD = 1 
 

 

Approach: We have to approach this problem greedily. It is obvious that when we decrease the number of elements then the LCM will become smaller and when we increase the number of elements then the GCD will become smaller. So we will take the smallest element of the array which is a single element and will be the required LCM. Now for GCD, minimum GCD will be the GCD of all the elements of the array.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return minimum GCD
// among all subarrays
int minGCD(int arr[], int n)
{
 
    int minGCD = 0;
 
    // Minimum GCD among all sub-arrays will be
    // the GCD of all the elements of the array
    for (int i = 0; i < n; i++)
        minGCD = __gcd(minGCD, arr[i]);
 
    return minGCD;
}
 
// Function to return minimum LCM
// among all subarrays
int minLCM(int arr[], int n)
{
 
    int minLCM = arr[0];
 
    // Minimum LCM among all sub-arrays will be
    // the minimum element from the array
    for (int i = 1; i < n; i++)
        minLCM = min(minLCM, arr[i]);
 
    return minLCM;
}
 
// Driver code
int main()
{
 
    int arr[] = { 2, 66, 14, 521 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "LCM = " << minLCM(arr, n)
         << ", GCD = " << minGCD(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
// Function to return minimum GCD
// among all subarrays
static int __gcd(int a, int b)
{
    if (a == 0)
        return b;
    return __gcd(b % a, a);
}
static int minGCD(int arr[], int n)
{
 
    int minGCD = 0;
 
    // Minimum GCD among all sub-arrays will be
    // the GCD of all the elements of the array
    for (int i = 0; i < n; i++)
        minGCD = __gcd(minGCD, arr[i]);
 
    return minGCD;
}
 
// Function to return minimum LCM
// among all subarrays
static int minLCM(int arr[], int n)
{
 
    int minLCM = arr[0];
 
    // Minimum LCM among all sub-arrays will be
    // the minimum element from the array
    for (int i = 1; i < n; i++)
        minLCM = Math.min(minLCM, arr[i]);
 
    return minLCM;
}
 
// Driver code
public static void main(String[] args)
{
 
    int arr[] = { 2, 66, 14, 521 };
    int n = arr.length;
 
    System.out.println("LCM = " + minLCM(arr, n)
        + " GCD = "+minGCD(arr, n));
 
}
}
// This code is contributed by Code_Mech.

Python3




# Python3 implementation of the approach
from math import gcd
 
# Function to return minimum GCD
# among all subarrays
def minGCD(arr, n) :
 
    minGCD = 0;
     
    # Minimum GCD among all sub-arrays
    # will be the GCD of all the elements
    # of the array
    for i in range(n) :
        minGCD = gcd(minGCD, arr[i]);
         
    return minGCD;
 
# Function to return minimum LCM
# among all subarrays
def minLCM(arr, n) :
 
    minLCM = arr[0];
 
    # Minimum LCM among all sub-arrays 
    # will be the minimum element from
    # the array
    for i in range(1, n) :
        minLCM = min(minLCM, arr[i]);
 
    return minLCM;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 2, 66, 14, 521 ];
    n = len(arr);
 
    print("LCM = ", minLCM(arr, n),
          ", GCD =", minGCD(arr, n));
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to return minimum GCD
    // among all subarrays
    static int __gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return __gcd(b % a, a);
    }
    static int minGCD(int [] arr, int n)
    {
        int minGCD = 0;
     
        // Minimum GCD among all sub-arrays
        // will be the GCD of all the
        // elements of the array
        for (int i = 0; i < n; i++)
            minGCD = __gcd(minGCD, arr[i]);
     
        return minGCD;
    }
     
    // Function to return minimum LCM
    // among all subarrays
    static int minLCM(int [] arr, int n)
    {
     
        int minLCM = arr[0];
     
        // Minimum LCM among all sub-arrays
        // will be the minimum element from
        // the array
        for (int i = 1; i < n; i++)
            minLCM = Math.Min(minLCM, arr[i]);
     
        return minLCM;
    }
     
    // Driver code
    public static void Main()
    {
     
        int [] arr = { 2, 66, 14, 521 };
        int n = arr.Length;
     
        Console.WriteLine("LCM = " + minLCM(arr, n) +      
                          ", GCD = " + minGCD(arr, n));
    }
}
 
// This code is contributed by ihritik.

PHP




<?php
// PHP implementation of the approach
 
// Function to return minimum GCD
// among all subarrays
function __gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return __gcd($b % $a, $a);
}
function minGCD($arr, $n)
{
    $minGCD = 0;
 
    // Minimum GCD among all sub-arrays
    // will be the GCD of all the
    // elements of the array
    for ($i = 0; $i < $n; $i++)
        $minGCD = __gcd($minGCD,
                        $arr[$i]);
 
    return $minGCD;
}
 
// Function to return minimum LCM
// among all subarrays
function minLCM($arr, $n)
{
    $minLCM = $arr[0];
 
    // Minimum LCM among all sub-arrays
    // will be the minimum element from
    // the array
    for ($i = 1; $i < $n; $i++)
        $minLCM = min($minLCM,
                      $arr[$i]);
 
    return $minLCM;
}
 
// Driver code
$arr = array(2, 66, 14, 521 );
$n = sizeof($arr);
 
echo "LCM = " . minLCM($arr, $n) . ", ";
echo "GCD = " . minGCD($arr, $n);
 
// This code is contributed by ihritik.
?>

Javascript




<script>
// javascript implementation of the approach
 
    // Function to return minimum GCD
    // among all subarrays
    function __gcd(a , b) {
        if (a == 0)
            return b;
        return __gcd(b % a, a);
    }
 
    function minGCD(arr , n) {
 
        var minGCD = 0;
 
        // Minimum GCD among all sub-arrays will be
        // the GCD of all the elements of the array
        for (i = 0; i < n; i++)
            minGCD = __gcd(minGCD, arr[i]);
 
        return minGCD;
    }
 
    // Function to return minimum LCM
    // among all subarrays
    function minLCM(arr , n) {
 
        var minLCM = arr[0];
 
        // Minimum LCM among all sub-arrays will be
        // the minimum element from the array
        for (i = 1; i < n; i++)
            minLCM = Math.min(minLCM, arr[i]);
 
        return minLCM;
    }
 
    // Driver code
        var arr = [ 2, 66, 14, 521 ];
        var n = arr.length;
        document.write("LCM = " + minLCM(arr, n) + " GCD = " + minGCD(arr, n));
 
// This code contributed by umadevi9616
</script>
Output: 



LCM = 2, GCD = 1

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :