Skip to content
Related Articles

Related Articles

Improve Article

Sum of all elements between k1’th and k2’th smallest elements

  • Difficulty Level : Easy
  • Last Updated : 29 Jun, 2021

Given an array of integers and two numbers k1 and k2. Find the sum of all elements between given two k1’th and k2’th smallest elements of the array. It may be assumed that (1 <= k1 < k2 <= n) and all elements of array are distinct.

Examples : 

Input : arr[] = {20, 8, 22, 4, 12, 10, 14},  k1 = 3,  k2 = 6  
Output : 26          
         3rd smallest element is 10. 6th smallest element 
         is 20. Sum of all element between k1 & k2 is
         12 + 14 = 26

Input : arr[] = {10, 2, 50, 12, 48, 13}, k1 = 2, k2 = 6 
Output : 73 

Method 1 (Sorting) 
First sort the given array using a O(n log n) sorting algorithm like Merge Sort, Heap Sort, etc and return the sum of all element between index k1 and k2 in the sorted array.

Below is the implementation of the above idea :  

C++




// C++ program to find sum of all element between
// to K1'th and k2'th smallest elements in array
#include <bits/stdc++.h>
 
using namespace std;
 
// Returns sum between two kth smallest elements of the array
int sumBetweenTwoKth(int arr[], int n, int k1, int k2)
{
    // Sort the given array
    sort(arr, arr + n);
 
    /* Below code is equivalent to
     int result = 0;
     for (int i=k1; i<k2-1; i++)
      result += arr[i]; */
    return accumulate(arr + k1, arr + k2 - 1, 0);
}
 
// Driver program
int main()
{
    int arr[] = { 20, 8, 22, 4, 12, 10, 14 };
    int k1 = 3, k2 = 6;
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << sumBetweenTwoKth(arr, n, k1, k2);
    return 0;
}

Java




// Java program to find sum of all element
// between to K1'th and k2'th smallest
// elements in array
import java.util.Arrays;
 
class GFG {
 
    // Returns sum between two kth smallest
    // element of array
    static int sumBetweenTwoKth(int arr[],
                                int k1, int k2)
    {
        // Sort the given array
        Arrays.sort(arr);
 
        // Below code is equivalent to
        int result = 0;
 
        for (int i = k1; i < k2 - 1; i++)
            result += arr[i];
 
        return result;
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        int arr[] = { 20, 8, 22, 4, 12, 10, 14 };
        int k1 = 3, k2 = 6;
        int n = arr.length;
 
        System.out.print(sumBetweenTwoKth(arr,
                                          k1, k2));
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python program to find sum of
# all element between to K1'th and
# k2'th smallest elements in array
 
# Returns sum between two kth
# smallest element of array
def sumBetweenTwoKth(arr, n, k1, k2):
 
    # Sort the given array
    arr.sort()
 
    result = 0
    for i in range(k1, k2-1):
        result += arr[i]
    return result
 
# Driver code
arr = [ 20, 8, 22, 4, 12, 10, 14 ]
k1 = 3; k2 = 6
n = len(arr)
print(sumBetweenTwoKth(arr, n, k1, k2))
 
 
# This code is contributed by Anant Agarwal.

C#




// C# program to find sum of all element
// between to K1'th and k2'th smallest
// elements in array
using System;
 
class GFG {
 
    // Returns sum between two kth smallest
    // element of array
    static int sumBetweenTwoKth(int[] arr, int n,
                                int k1, int k2)
    {
        // Sort the given array
        Array.Sort(arr);
 
        // Below code is equivalent to
        int result = 0;
 
        for (int i = k1; i < k2 - 1; i++)
            result += arr[i];
 
        return result;
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 20, 8, 22, 4, 12, 10, 14 };
        int k1 = 3, k2 = 6;
        int n = arr.Length;
 
        Console.Write(sumBetweenTwoKth(arr, n, k1, k2));
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP program to find sum of all element between
// to K1'th and k2'th smallest elements in array
 
// Returns sum between two kth smallest elements of the array
function sumBetweenTwoKth($arr, $n, $k1, $k2)
{
    // Sort the given array
    sort($arr);
 
    // Below code is equivalent to
        $result = 0;
  
        for ($i = $k1; $i < $k2 - 1; $i++)
            $result += $arr[$i];
  
        return $result;
}
 
// Driver program
 
    $arr = array( 20, 8, 22, 4, 12, 10, 14 );
    $k1 = 3;
    $k2 = 6;
    $n = count($arr);;
    echo sumBetweenTwoKth($arr, $n, $k1, $k2);
     
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript program to find sum of all element
// between to K1'th and k2'th smallest
// elements in array
 
// Returns sum between two kth smallest
// element of array
function sumBetweenTwoKth(arr, k1 , k2)
{
     
    // Sort the given array
    arr.sort(function(a, b){return a - b});
 
    // Below code is equivalent to
    var result = 0;
 
    for(var i = k1; i < k2 - 1; i++)
        result += arr[i];
 
    return result;
}
 
// Driver code
var arr = [ 20, 8, 22, 4, 12, 10, 14 ];
var k1 = 3, k2 = 6;
var n = arr.length;
 
document.write(sumBetweenTwoKth(arr,
                                k1, k2));
 
// This code is contributed by shikhasingrajput
 
</script>

Output: 



 26

Time Complexity: O(n log n) 

Method 2 (Using Min Heap) 
We can optimize the above solution be using a min heap. 
1) Create a min heap of all array elements. (This step takes O(n) time) 
2) Do extract minimum k1 times (This step takes O(K1 Log n) time) 
3) Do extract minimum k2 – k1 – 1 time and sum all extracted elements. (This step takes O ((K2 – k1) * Log n) time)

Method 2 Implementation 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
int n = 7;
 
void minheapify(int a[], int index)
{
 
    int small = index;
    int l = 2 * index + 1;
    int r = 2 * index + 2;
 
    if (l < n && a[l] < a[small])
        small = l;
 
    if (r < n && a[r] < a[small])
        small = r;
 
    if (small != index) {
        swap(a[small], a[index]);
        minheapify(a, small);
    }
}
 
int main()
{
    int i = 0;
    int k1 = 3;
    int k2 = 6;
 
    int a[] = { 20, 8, 22, 4, 12, 10, 14 };
 
    int ans = 0;
 
    for (i = (n / 2) - 1; i >= 0; i--) {
        minheapify(a, i);
    }
 
    // decreasing value by 1 because we want min heapifying k times and it starts
    // from 0 so we have to decrease it 1 time
    k1--;
    k2--;
 
    // Step 1: Do extract minimum k1 times (This step takes O(K1 Log n) time)
    for (i = 0; i <= k1; i++) {
        // cout<<a[0]<<endl;
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    /*Step 2: Do extract minimum k2 – k1 – 1 times and sum all
   extracted elements. (This step takes O ((K2 – k1) * Log n) time)*/
    for (i = k1 + 1; i < k2; i++) {
        // cout<<a[0]<<endl;
        ans += a[0];
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    cout << ans;
 
    return 0;
}

Java




// Java implementation of above approach
class GFG
{
     
static int n = 7;
 
static void minheapify(int []a, int index)
{
 
    int small = index;
    int l = 2 * index + 1;
    int r = 2 * index + 2;
 
    if (l < n && a[l] < a[small])
        small = l;
 
    if (r < n && a[r] < a[small])
        small = r;
 
    if (small != index)
    {
        int t = a[small];
        a[small] = a[index];
        a[index] = t;
        minheapify(a, small);
    }
}
 
// Driver code
public static void main (String[] args)
{
    int i = 0;
    int k1 = 3;
    int k2 = 6;
 
    int []a = { 20, 8, 22, 4, 12, 10, 14 };
 
    int ans = 0;
 
    for (i = (n / 2) - 1; i >= 0; i--)
    {
        minheapify(a, i);
    }
 
    // decreasing value by 1 because we want
    // min heapifying k times and it starts
    // from 0 so we have to decrease it 1 time
    k1--;
    k2--;
 
    // Step 1: Do extract minimum k1 times
    // (This step takes O(K1 Log n) time)
    for (i = 0; i <= k1; i++)
    {
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    for (i = k1 + 1; i < k2; i++)
    {
        // cout<<a[0]<<endl;
        ans += a[0];
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    System.out.println(ans);
}
}
 
// This code is contributed by mits

Python3




# Python 3 implementation of above approach
n = 7
 
def minheapify(a, index):
    small = index
    l = 2 * index + 1
    r = 2 * index + 2
 
    if (l < n and a[l] < a[small]):
        small = l
 
    if (r < n and a[r] < a[small]):
        small = r
 
    if (small != index):
        (a[small], a[index]) = (a[index], a[small])
        minheapify(a, small)
     
# Driver Code
i = 0
k1 = 3
k2 = 6
 
a = [ 20, 8, 22, 4, 12, 10, 14 ]
ans = 0
 
for i in range((n //2) - 1, -1, -1):
    minheapify(a, i)
 
# decreasing value by 1 because we want
# min heapifying k times and it starts
# from 0 so we have to decrease it 1 time
k1 -= 1
k2 -= 1
 
# Step 1: Do extract minimum k1 times
# (This step takes O(K1 Log n) time)
for i in range(0, k1 + 1):
    a[0] = a[n - 1]
    n -= 1
    minheapify(a, 0)
 
# Step 2: Do extract minimum k2 – k1 – 1 times and
# sum all extracted elements.
# (This step takes O ((K2 – k1) * Log n) time)*/
for i in range(k1 + 1, k2) :
    ans += a[0]
    a[0] = a[n - 1]
    n -= 1
    minheapify(a, 0)
 
print (ans)
 
# This code is contributed
# by Atul_kumar_Shrivastava

C#




// C# implementation of above approach
using System;
 
class GFG
{
     
static int n = 7;
 
static void minheapify(int []a, int index)
{
 
    int small = index;
    int l = 2 * index + 1;
    int r = 2 * index + 2;
 
    if (l < n && a[l] < a[small])
        small = l;
 
    if (r < n && a[r] < a[small])
        small = r;
 
    if (small != index)
    {
        int t = a[small];
        a[small] = a[index];
        a[index] = t;
        minheapify(a, small);
    }
}
 
// Driver code
static void Main()
{
    int i = 0;
    int k1 = 3;
    int k2 = 6;
 
    int []a = { 20, 8, 22, 4, 12, 10, 14 };
 
    int ans = 0;
 
    for (i = (n / 2) - 1; i >= 0; i--)
    {
        minheapify(a, i);
    }
 
    // decreasing value by 1 because we want
    // min heapifying k times and it starts
    // from 0 so we have to decrease it 1 time
    k1--;
    k2--;
 
    // Step 1: Do extract minimum k1 times
    // (This step takes O(K1 Log n) time)
    for (i = 0; i <= k1; i++)
    {
        // cout<<a[0]<<endl;
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    /*Step 2: Do extract minimum k2 – k1 – 1 times
    and sum all extracted elements. (This step
    takes O ((K2 – k1) * Log n) time)*/
    for (i = k1 + 1; i < k2; i++)
    {
        // cout<<a[0]<<endl;
        ans += a[0];
        a[0] = a[n - 1];
        n--;
        minheapify(a, 0);
    }
 
    Console.Write(ans);
}
}
 
// This code is contributed by mits

Javascript




<script>
 
// Javascript implementation of above approach
let n = 7;
 
function minheapify(a, index)
{
    let small = index;
    let l = 2 * index + 1;
    let r = 2 * index + 2;
 
    if (l < n && a[l] < a[small])
        small = l;
 
    if (r < n && a[r] < a[small])
        small = r;
 
    if (small != index)
    {
        let t = a[small];
        a[small] = a[index];
        a[index] = t;
        minheapify(a, small);
    }
}
 
// Driver code
let i = 0;
let k1 = 3;
let k2 = 6;
 
let a = [ 20, 8, 22, 4, 12, 10, 14 ];
 
let ans = 0;
 
for(i = parseInt(n / 2, 10) - 1; i >= 0; i--)
{
    minheapify(a, i);
}
 
// decreasing value by 1 because we want
// min heapifying k times and it starts
// from 0 so we have to decrease it 1 time
k1--;
k2--;
 
// Step 1: Do extract minimum k1 times
// (This step takes O(K1 Log n) time)
for(i = 0; i <= k1; i++)
{
    a[0] = a[n - 1];
    n--;
    minheapify(a, 0);
}
 
for(i = k1 + 1; i < k2; i++)
{
     
    // cout<<a[0]<<endl;
    ans += a[0];
    a[0] = a[n - 1];
    n--;
    minheapify(a, 0);
}
 
document.write(ans);
 
// This code is contributed by vaibhavrabadiya117
 
</script>

Output: 

 26

Overall time complexity of this method is O(n + k2 Log n) which is better than sorting based method.
References : https://www.geeksforgeeks.org/heap-sort 

This article is contributed by Nishant_Singh (Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :