Subset array sum by generating all the subsets

Given an array of size N and a sum, the task is to check whether some array elements can be added to sum to N .

Note: At least one element should be included to form the sum.(i.e. sum cant be zero)

Examples:

Input: array = -1, 2, 4, 121, N = 5
Output: YES
The array elements 2, 4, -1 can be added to sum to N

Input: array = 1, 3, 7, 121, N = 5
Output:NO 


Approach: The idea is to generate all subsets using Generate all subsequences of array and correspondingly check if any subsequence has the sum equal to the given sum.

Below is the implementation of above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Find way to sum to N using array elements atmost once
void find(int arr[], int length, int s)
{
    // loop for all 2^n combinations
    for (int i = 1; i <= (pow(2, length)); i++) {
  
        // sum of a combination
        int sum = 0;
  
        for (int j = 0; j < length; j++)
  
            // if the bit is 1 then add the element
            if (((i >> j) & 1))
                sum += arr[j];
  
        // if the sum is equal to given sum print yes
        if (sum == s) {
            cout << "YES" << endl;
            return;
        }
    }
  
    // else print no
    cout << "NO" << endl;
}
  
// driver code
int main()
{
    int sum = 5;
    int array[] = { -1, 2, 4, 121 };
    int length = sizeof(array) / sizeof(int);
  
    // find whether it is possible to sum to n
    find(array, length, sum);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG
{
      
        // Find way to sum to N using array elements atmost once
        static void find(int [] arr, int length, int s)
        {
            // loop for all 2^n combinations
            for (int i = 1; i <= (Math.pow(2, length)); i++) {
          
                // sum of a combination
                int sum = 0;
          
                for (int j = 0; j < length; j++)
          
                    // if the bit is 1 then add the element
                    if (((i >> j) & 1) % 2 == 1)
                        sum += arr[j];
          
                // if the sum is equal to given sum print yes
                if (sum == s) {
                    System.out.println("YES");
                    return;
                }
            }
          
            // else print no
            System.out.println("NO");
        }
          
        // driver code
        public static void main(String[] args)
        {
            int sum = 5;
            int []array = { -1, 2, 4, 121 };
            int length = array.length;
          
            // find whether it is possible to sum to n
            find(array, length, sum);
          
        }
  
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation
from itertools import combinations
  
def find(lst, n):
    print('YES' if [1 for r in range(1, len(lst) + 1
                      for subset in combinations(lst, r) 
                      if sum(subset) ==   n] else 'NO')
  
find([-1, 2, 4, 121], 5)
  
#This code is contributed by signi dimitri

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

      
// C# implementation of the above approach
using System;
public class GFG
{
       
        // Find way to sum to N using array elements atmost once
        static void find(int [] arr, int length, int s)
        {
            // loop for all 2^n combinations
            for (int i = 1; i <= (Math.Pow(2, length)); i++) {
           
                // sum of a combination
                int sum = 0;
           
                for (int j = 0; j < length; j++)
           
                    // if the bit is 1 then add the element
                    if (((i >> j) & 1) % 2 == 1)
                        sum += arr[j];
           
                // if the sum is equal to given sum print yes
                if (sum == s) {
                    Console.Write("YES");
                    return;
                }
            }
           
            // else print no
            Console.Write("NO");
        }
           
        // driver code
        public static void Main()
        {
            int sum = 5;
            int []array = { -1, 2, 4, 121 };
            int length = array.Length;
           
            // find whether it is possible to sum to n
            find(array, length, sum);
           
        }
   
}
  
// This code is contributed by PrinciRaj19992

chevron_right


Output:

YES

Note: This program would not run for the large size of the array.



My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.