Split the number into N parts such that difference between the smallest and the largest part is minimum
Given two integers ‘X’ and ‘N’, the task is to split the integer ‘X’ into exactly ‘N’ parts such that:
X1 + X2 + X3 + … + Xn = X and the difference between the maximum and the minimum number from the sequence is minimized.
Print the sequence in the end, if the number cannot be divided into exactly ‘N’ parts then print ‘-1’ instead.
Examples:
Input: X = 5, N = 3
Output: 1 2 2
Divide 5 into 3 parts such that the difference between the largest and smallest integer among
them is as minimal as possible. So we divide 5 as 1 + 2 + 2.Input: X = 25, N = 5
Output: 5 5 5 5 5
Approach: There is always a way of splitting the number if X >= N.
- If the number is being split into exactly ‘N’ parts then every part will have the value X/N and the remaining X%N part can be distributed among any X%N numbers.
- Thus, if X % N == 0 then the minimum difference will always be ‘0’ and the sequence will contain all equal numbers i.e. x/n.
- Else, the difference will be ‘1’ and the sequence will be X/N, X/N, …, (X/N)+1, (X/N)+1..
Below is the implementation of the above approach:
C++
// CPP implementation of the approach #include<bits/stdc++.h> using namespace std; // Function that prints // the required sequence void split( int x, int n) { // If we cannot split the // number into exactly 'N' parts if (x < n) cout<< "-1" << " " ; // If x % n == 0 then the minimum // difference is 0 and all // numbers are x / n else if (x % n == 0) { for ( int i=0;i<n;i++) cout<<(x/n)<< " " ; } else { // upto n-(x % n) the values // will be x / n // after that the values // will be x / n + 1 int zp = n - (x % n); int pp = x/n; for ( int i=0;i<n;i++) { if (i>= zp) cout<<(pp + 1)<< " " ; else cout<<pp<< " " ; } } } // Driver code int main() { int x = 5; int n = 3; split(x, n); } //THis code is contributed // Surendra_Gangwar |
Java
// Java implementation of the approach class GFG{ // Function that prints // the required sequence static void split( int x, int n) { // If we cannot split the // number into exactly 'N' parts if (x < n) System.out.print( "-1 " ); // If x % n == 0 then the minimum // difference is 0 and all // numbers are x / n else if (x % n == 0 ) { for ( int i= 0 ;i<n;i++) System.out.print((x/n)+ " " ); } else { // upto n-(x % n) the values // will be x / n // after that the values // will be x / n + 1 int zp = n - (x % n); int pp = x/n; for ( int i= 0 ;i<n;i++) { if (i>= zp) System.out.print((pp + 1 )+ " " ); else System.out.print(pp+ " " ); } } } // Driver code public static void main(String[] args) { int x = 5 ; int n = 3 ; split(x, n); } } //This code is contributed by mits |
Python3
# Python3 implementation of the approach # Function that prints # the required sequence def split(x, n): # If we cannot split the # number into exactly 'N' parts if (x < n): print ( - 1 ) # If x % n == 0 then the minimum # difference is 0 and all # numbers are x / n elif (x % n = = 0 ): for i in range (n): print (x / / n, end = " " ) else : # upto n-(x % n) the values # will be x / n # after that the values # will be x / n + 1 zp = n - (x % n) pp = x / / n for i in range (n): if (i> = zp): print (pp + 1 , end = " " ) else : print (pp, end = " " ) # Driver code x = 5 n = 3 split(x, n) |
C#
// C# implementation of the approach using System; public class GFG{ // Function that prints // the required sequence static void split( int x, int n) { // If we cannot split the // number into exactly 'N' parts if (x < n) Console.WriteLine( "-1 " ); // If x % n == 0 then the minimum // difference is 0 and all // numbers are x / n else if (x % n == 0) { for ( int i=0;i<n;i++) Console.Write((x/n)+ " " ); } else { // upto n-(x % n) the values // will be x / n // after that the values // will be x / n + 1 int zp = n - (x % n); int pp = x/n; for ( int i=0;i<n;i++) { if (i>= zp) Console.Write((pp + 1)+ " " ); else Console.Write(pp+ " " ); } } } // Driver code static public void Main (){ int x = 5; int n = 3; split(x, n); } } //This code is contributed by Sachin. |
PHP
<?php // PHP implementation of the approach // Function that prints // the required sequence function split( $x , $n ) { // If we cannot split the // number into exactly 'N' parts if ( $x < $n ) echo (-1); // If x % n == 0 then the minimum // difference is 0 and all // numbers are x / n else if ( $x % $n == 0) { for ( $i = 0; $i < $n ; $i ++) { echo ( $x / $n ); echo ( " " ); } } else { // upto n-(x % n) the values // will be x / n // after that the values // will be x / n + 1 $zp = $n - ( $x % $n ); $pp = $x / $n ; for ( $i = 0; $i < $n ; $i ++) { if ( $i >= $zp ) { echo (int) $pp + 1; echo ( " " ); } else { echo (int) $pp ; echo ( " " ); } } } } // Driver code $x = 5; $n = 3; split( $x , $n ); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // JavaScript implementation of the above approach // Function that prints // the required sequence function split(x, n) { // If we cannot split the // number into exactly 'N' parts if (x < n) document.write( "-1 " ); // If x % n == 0 then the minimum // difference is 0 and all // numbers are x / n else if (x % n == 0) { for (let i=0;i<n;i++) document.write((x/n)+ " " ); } else { // upto n-(x % n) the values // will be x / n // after that the values // will be x / n + 1 let zp = n - (x % n); let pp = Math.floor(x/n); for (let i=0;i<n;i++) { if (i>= zp) document.write((pp + 1)+ " " ); else document.write(pp+ " " ); } } } // driver code let x = 5; let n = 3; split(x, n); </script> |
1 2 2
Time Complexity: O(n), since there run loop from 0 to (n – 1).
Auxiliary Space: O(1), since no extra space has been taken.
Please Login to comment...