Given an array arr[] consisting of N positive integers, the task is to find the minimum possible length of a rod that can be cut into N equal parts such that every ith part can be cut into arr[i] equal parts.
Examples:
Input: arr[] = {1, 2}
Output: 4
Explanation:
Consider the length of the rod as 4. Then it can be divided in 2 equal parts, each having length 2.
Now, part 1 can be divided in arr[0](= 1) equal parts of length 2.
Part 2 can be divided in arr[1](= 2) equal parts of length 1.
Therefore, the minimum length of the rod must be 4.
Input: arr[] = {1, 1}
Output: 2
Naive Approach: The given problem can be solved based on the following observations:
- Consider the minimum length of the rod is X, then this rod is cut into N equal parts and the length of each part will be X/N.
- Now each N parts will again be cut down as follows:
- Part 1 will be cut into arr[0] equal where each part has a length say a1.
- Part 2 will be cut into arr[1] equal where each part has a length say a2.
- Part 3 will be cut into arr[2] equal where each part has a length say a3.
- .
- .
- .
- and so on.
- Now, the above relation can also be written as:
X/N = arr[0]*a1 = arr[1]*a2 = … = arr[N – 1]*aN.
- Therefore, the minimum length of the rod is given by:
N*lcm (arr[0]*a1, arr[1]*a2, …, arr[N – 1]*aN)
From the above observations, print the value of the product of N and the LCM of the given array arr[] as the resultant minimum length of the rod.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
int findlcm( int arr[], int n)
{
int ans = arr[0];
for ( int i = 1; i < n; i++) {
ans = (((arr[i] * ans))
/ (gcd(arr[i], ans)));
}
return ans;
}
void minimumRod( int A[], int N)
{
cout << N * findlcm(A, N);
}
int main()
{
int arr[] = { 1, 2 };
int N = sizeof (arr) / sizeof (arr[0]);
minimumRod(arr, N);
return 0;
}
|
Java
import java.io.*;
import java.lang.*;
import java.util.*;
public class GFG {
static int gcd( int a, int b)
{
if (b == 0 )
return a;
return gcd(b, a % b);
}
static int findlcm( int arr[], int n)
{
int ans = arr[ 0 ];
for ( int i = 1 ; i < n; i++) {
ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
}
return ans;
}
static void minimumRod( int A[], int N)
{
System.out.println(N * findlcm(A, N));
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 };
int N = arr.length;
minimumRod(arr, N);
}
}
|
Python3
def gcd(a, b):
if (b = = 0 ):
return a
return gcd(b, a % b)
def findlcm(arr, n):
ans = arr[ 0 ]
for i in range (n):
ans = (((arr[i] * ans)) /
(gcd(arr[i], ans)))
return ans
def minimumRod(A, N):
print ( int (N * findlcm(A, N)))
arr = [ 1 , 2 ]
N = len (arr)
minimumRod(arr, N)
|
C#
using System;
class GFG
{
static int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static int findlcm( int [] arr, int n)
{
int ans = arr[0];
for ( int i = 1; i < n; i++) {
ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
}
return ans;
}
static void minimumRod( int [] A, int N)
{
Console.WriteLine(N * findlcm(A, N));
}
static void Main()
{
int [] arr = { 1, 2 };
int N = arr.Length;
minimumRod(arr, N);
}
}
|
Javascript
<script>
function gcd(a, b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
function findlcm(arr, n)
{
let ans = arr[0];
for (let i = 1; i < n; i++) {
ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
}
return ans;
}
function minimumRod(A, N)
{
document.write(N * findlcm(A, N));
}
let arr = [ 1, 2 ];
let N = arr.length;
minimumRod(arr, N);
</script>
|
Time Complexity: O(N*log M) where M is the maximum element of the array.
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!