Skip to content
Related Articles

Related Articles

Improve Article

Split the array into equal sum parts according to given conditions

  • Difficulty Level : Medium
  • Last Updated : 20 May, 2021

Given an integer array arr[], the task is to check if the input array can be split in two sub-arrays such that: 
 

  • Sum of both the sub-arrays is equal.
  • All the elements which are divisible by 5 should be in the same group.
  • All the elements which are divisible by 3 (but not divisible by 5) should be in the other group.
  • Elements which are neither divisible by 5 nor by 3 can be put in any group.

If possible then print Yes else print No.
Examples: 
 

Input: arr[] = {1, 2} 
Output: No 
The elements cannot be divided in groups such that there sum is equal.
Input: arr[] = {1, 4, 3} 
Output: Yes 
{1, 3} and {4} are the groups satisfying the given condition. 
 

 

Approach: We can use a recursive approach by keeping left sum and right sum to maintain two different groups. Left sum is for multiples of 5 and right sum is for multiples of 3 (which are not multiples of 5) and the elements which are neither divisible by 5 nor by 3 can lie in any group satisfying the equal sum rule (include them in left sum and right sum one by one).
Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function that returns true if the array
// can be divided into two sub-arrays
// satisfying the given condition
bool helper(int* arr, int n, int start, int lsum, int rsum)
{
 
    // If reached the end
    if (start == n)
        return lsum == rsum;
 
    // If divisible by 5 then add to the left sum
    if (arr[start] % 5 == 0)
        lsum += arr[start];
 
    // If divisible by 3 but not by 5
    // then add to the right sum
    else if (arr[start] % 3 == 0)
        rsum += arr[start];
 
    // Else it can be added to any of the sub-arrays
    else
 
        // Try adding in both the sub-arrays (one by one)
        // and check whether the condition satisfies
        return helper(arr, n, start + 1, lsum + arr[start], rsum)
           || helper(arr, n, start + 1, lsum, rsum + arr[start]);
 
    // For cases when element is multiple of 3 or 5.
    return helper(arr, n, start + 1, lsum, rsum);
}
 
// Function to start the recursive calls
bool splitArray(int* arr, int n)
{
    // Initially start, lsum and rsum will all be 0
    return helper(arr, n, 0, 0, 0);
}
 
// Driver code
int main()
{
    int arr[] = { 1, 4, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    if (splitArray(arr, n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
class Solution
{
 
// Recursive function that returns true if the array
// can be divided into two sub-arrays
// satisfying the given condition
static boolean helper(int arr[], int n,
                    int start, int lsum, int rsum)
{
 
    // If reached the end
    if (start == n)
        return lsum == rsum;
 
    // If divisible by 5 then add to the left sum
    if (arr[start] % 5 == 0)
        lsum += arr[start];
 
    // If divisible by 3 but not by 5
    // then add to the right sum
    else if (arr[start] % 3 == 0)
        rsum += arr[start];
 
    // Else it can be added to any of the sub-arrays
    else
 
        // Try adding in both the sub-arrays (one by one)
        // and check whether the condition satisfies
        return helper(arr, n, start + 1, lsum + arr[start], rsum)
        || helper(arr, n, start + 1, lsum, rsum + arr[start]);
 
    // For cases when element is multiple of 3 or 5.
    return helper(arr, n, start + 1, lsum, rsum);
}
 
// Function to start the recursive calls
static boolean splitArray(int arr[], int n)
{
    // Initially start, lsum and rsum will all be 0
    return helper(arr, n, 0, 0, 0);
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 1, 4, 3 };
    int n = arr.length;
 
    if (splitArray(arr, n))
        System.out.println( "Yes");
    else
        System.out.println( "No");
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python 3 implementation of the approach
 
# Recursive function that returns true if
# the array can be divided into two sub-arrays
# satisfying the given condition
def helper(arr, n, start, lsum, rsum):
 
    # If reached the end
    if (start == n):
        return lsum == rsum
 
    # If divisible by 5 then add
    # to the left sum
    if (arr[start] % 5 == 0):
        lsum += arr[start]
 
    # If divisible by 3 but not by 5
    # then add to the right sum
    elif (arr[start] % 3 == 0):
        rsum += arr[start]
 
    # Else it can be added to any of
    # the sub-arrays
    else:
 
        # Try adding in both the sub-arrays
        # (one by one) and check whether
        # the condition satisfies
        return (helper(arr, n, start + 1,
                lsum + arr[start], rsum) or
                helper(arr, n, start + 1,
                lsum, rsum + arr[start]));
 
    # For cases when element is multiple of 3 or 5.
    return helper(arr, n, start + 1, lsum, rsum)
 
# Function to start the recursive calls
def splitArray(arr, n):
     
    # Initially start, lsum and rsum
    # will all be 0
    return helper(arr, n, 0, 0, 0)
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 1, 4, 3 ]
    n = len(arr)
 
    if (splitArray(arr, n)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by ita_c

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Recursive function that returns true if the array
    // can be divided into two sub-arrays
    // satisfying the given condition
    static bool helper(int []arr, int n,
                        int start, int lsum, int rsum)
    {
     
        // If reached the end
        if (start == n)
            return lsum == rsum;
     
        // If divisible by 5 then add to the left sum
        if (arr[start] % 5 == 0)
            lsum += arr[start];
     
        // If divisible by 3 but not by 5
        // then add to the right sum
        else if (arr[start] % 3 == 0)
            rsum += arr[start];
     
        // Else it can be added to any of the sub-arrays
        else
     
            // Try adding in both the sub-arrays (one by one)
            // and check whether the condition satisfies
            return helper(arr, n, start + 1, lsum + arr[start], rsum)
            || helper(arr, n, start + 1, lsum, rsum + arr[start]);
     
        // For cases when element is multiple of 3 or 5.
        return helper(arr, n, start + 1, lsum, rsum);
    }
     
    // Function to start the recursive calls
    static bool splitArray(int []arr, int n)
    {
        // Initially start, lsum and rsum will all be 0
        return helper(arr, n, 0, 0, 0);
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 4, 3 };
        int n = arr.Length;
     
        if (splitArray(arr, n))
            Console.WriteLine( "Yes");
        else
            Console.WriteLine( "No");
    }
}
 
// This code is contributed by Ryuga

PHP




<?php
// PHP implementation of the approach
 
// Recursive function that returns true
// if the array can be divided into two
// sub-arrays satisfying the given condition
function helper(&$arr, $n, $start,
                    $lsum, $rsum)
{
 
    // If reached the end
    if ($start == $n)
        return $lsum == $rsum;
 
    // If divisible by 5 then
    // add to the left sum
    if ($arr[$start] % 5 == 0)
        $lsum += $arr[$start];
 
    // If divisible by 3 but not by 5
    // then add to the right sum
    else if ($arr[$start] % 3 == 0)
        $rsum += $arr[$start];
 
    // Else it can be added to any
    // of the sub-arrays
    else
 
        // Try adding in both the sub-arrays (one by one)
        // and check whether the condition satisfies
        return helper($arr, $n, $start + 1,
                      $lsum + $arr[$start], $rsum) ||
               helper($arr, $n, $start + 1,
                      $lsum, $rsum + $arr[$start]);
 
    // For cases when element is
    // multiple of 3 or 5.
    return helper($arr, $n, $start + 1,
                        $lsum, $rsum);
}
 
// Function to start the recursive calls
function splitArray($arr, $n)
{
    // Initially start, lsum and r
    // sum will all be 0
    return helper($arr, $n, 0, 0, 0);
}
 
// Driver code
$arr = array( 1, 4, 3 );
$n = count($arr);
 
if (splitArray($arr, $n))
    print("Yes");
else
    print("No");
 
// This code is contributed by mits
?>

Javascript




<script>
 
//js implementation of the approach
 
// Recursive function that returns true if the array
// can be divided into two sub-arrays
// satisfying the given condition
function helper( arr, n, start, lsum, rsum)
{
    // If reached the end
    if (start == n)
        return lsum == rsum;
 
    // If divisible by 5 then add to the left sum
    if (arr[start] % 5 == 0)
        lsum += arr[start];
 
    // If divisible by 3 but not by 5
    // then add to the right sum
    else if (arr[start] % 3 == 0)
        rsum += arr[start];
 
    // Else it can be added to any of the sub-arrays
    else
 
        // Try adding in both the sub-arrays (one by one)
        // and check whether the condition satisfies
        return helper(arr, n, start + 1, lsum + arr[start], rsum)
           || helper(arr, n, start + 1, lsum, rsum + arr[start]);
 
    // For cases when element is multiple of 3 or 5.
    return helper(arr, n, start + 1, lsum, rsum);
}
 
// Function to start the recursive calls
function splitArray(arr, n)
{
    // Initially start, lsum and rsum will all be 0
    return helper(arr, n, 0, 0, 0);
}
 
// Driver code
let arr = [1, 4, 3 ];
let n =arr.length;
if (splitArray(arr, n))
    document.write( "Yes");
else
     document.write( "No");
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :