An interesting solution to get all prime numbers smaller than n

This approach is based on Wilson’s theorem and using the fact that factorial computation can be done easily using DP

Wilson theorem says if a number k is prime then ((k-1)! + 1) % k must be 0.

Below is Python implementation of the approach. Note that the solution works in Python because Python supports large integers by default therefore factorial of large numbers can be computed.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to Prints prime numbers smaller than n
#include<bits/stdc++.h>
using namespace std;
void primesInRange(int n)
{
    // Compute factorials and apply Wilson's 
    // theorem.
    int fact = 1;
    for(int k=2;k<n;k++){
        fact = fact * (k - 1);
        if ((fact + 1) % k == 0)
            cout<<k<<endl;
            }
}
  
// Driver code
int main()
{
    int n = 15;
    primesInRange(n);
  
}
// This code is contributed by Rajput-Ji

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program prints prime numbers smaller than n
class GFG{
static void primesInRange(int n)
{
    // Compute factorials and apply Wilson's 
    // theorem.
    int fact = 1;
    for(int k=2;k<n;k++){
        fact = fact * (k - 1);
        if ((fact + 1) % k == 0)
            System.out.println(k);
            }
}
  
// Driver code
public static void main(String[] args){
int n = 15;
primesInRange(n);
}
}
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to prints prime numbers smaller than n
def primesInRange(n) :
  
    # Compute factorials and apply Wilson's 
    # theorem.
    fact = 1
    for k in range(2, n):
        fact = fact * (k - 1)
        if ((fact + 1) % k == 0):
            print k
  
# Driver code
n = 15
primesInRange(n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program prints prime numbers smaller than n
class GFG{
static void primesInRange(int n)
{
    // Compute factorials and apply Wilson's 
    // theorem.
    int fact = 1;
    for(int k=2;k<n;k++){
        fact = fact * (k - 1);
        if ((fact + 1) % k == 0)
            System.Console.WriteLine(k);
            }
}
  
// Driver code
static void Main(){
int n = 15;
primesInRange(n);
}
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to prints prime numbers smaller than n
function primesInRange($n)
{
    // Compute factorials and apply Wilson's 
    // theorem.
    $fact = 1;
    for($k=2;$k<$n;$k++){
        $fact = $fact * ($k - 1);
        if (($fact + 1) % $k == 0)
            print($k."\n");
            }
}
  
// Driver code
$n = 15;
primesInRange($n);
  
// This code is contributed by mits
?>

chevron_right



Output :

2
3
5
7
11
13

This article is contributed by Parikshit Mukherjee. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Mithun Kumar, Rajput-Ji