Given an array arr[] consisting of N integers, the task is to print the smaller of the two subsets obtained by splitting the array into two subsets such that the sum of the smaller subset is maximized.
Examples:
Input: arr[] = {5, 3, 2, 4, 1, 2}
Output: 4 5
Explanation:
Split the array into two subsets as {4, 5} and {1, 2, 2, 3}.
The subset {4, 5} is of minimum length, i.e. 2, having maximum sum = 4 + 5 = 9.
Input: arr[] = {20, 15, 20, 50, 20}
Output: 15 50
Approach: The given problem can be solved by using Hashing and Sorting.
Follow the steps below to solve the problem:
- Initialize a HashMap, say M, to store the frequency of each character of the array arr[].
- Traverse the array arr[] and increment the count of every character in the HashMap M.
- Initialize 2 variables, say S, and flag, to store the sum of the first subset and to store if an answer exists or not respectively.
- Sort the array arr[] in ascending order.
- Initialize an ArrayList, say ans, to store the elements of the resultant subset.
- Traverse the array arr[] in reverse order and perform the following steps:
- Store the frequency of the current character in a variable, say F.
- If (F + ans.size()) is less than (N – (F + ans.size())) then append the element arr[i] in the ArrayList ans F number of times.
- Decrement the value of i by F.
- If the value of S is greater than the sum of the array elements, then mark the flag as true and then break.
- After completing the above steps, if the value of flag is true, then print the ArrayList ans as the resultant subset. Otherwise, print -1.the
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
static void findSubset(vector< int > arr)
{
int N = arr.size();
map< int , int > mp;
int totSum = 0;
int s = 0;
int flag = 0;
vector< int > ans;
for ( int i = 0;
i < arr.size(); i++) {
totSum += arr[i];
mp[arr[i]]=mp[arr[i]]+1;
}
sort(arr.begin(),arr.end());
int i = N - 1;
while (i >= 0) {
int frq = mp[arr[i]];
if ((frq + ans.size())
< (N - (frq + ans.size())))
{
for ( int k = 0; k < frq; k++)
{
ans.push_back(arr[i]);
totSum -= arr[i];
s += arr[i];
i--;
}
}
else {
i -= frq;
}
if (s > totSum) {
flag = 1;
break ;
}
}
if (flag == 1) {
for (i = ans.size() - 1;
i >= 0; i--) {
cout<<ans[i]<< " " ;
}
}
else {
cout<<-1;
}
}
int main()
{
vector< int > arr = { 5, 3, 2, 4, 1, 2 };
findSubset(arr);
}
|
Java
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG {
static void findSubset( int [] arr)
{
int N = arr.length;
Map<Integer, Integer> map
= new HashMap<>();
int totSum = 0 ;
int s = 0 ;
int flag = 0 ;
ArrayList<Integer> ans
= new ArrayList<>();
for ( int i = 0 ;
i < arr.length; i++) {
totSum += arr[i];
map.put(arr[i],
map.getOrDefault(
arr[i], 0 )
+ 1 );
}
Arrays.sort(arr);
int i = N - 1 ;
while (i >= 0 ) {
int frq = map.get(arr[i]);
if ((frq + ans.size())
< (N - (frq + ans.size()))) {
for ( int k = 0 ; k < frq; k++) {
ans.add(arr[i]);
totSum -= arr[i];
s += arr[i];
i--;
}
}
else {
i -= frq;
}
if (s > totSum) {
flag = 1 ;
break ;
}
}
if (flag == 1 ) {
for (i = ans.size() - 1 ;
i >= 0 ; i--) {
System.out.print(
ans.get(i) + " " );
}
}
else {
System.out.print(- 1 );
}
}
public static void main(String[] args)
{
int [] arr = { 5 , 3 , 2 , 4 , 1 , 2 };
findSubset(arr);
}
}
|
Python3
from collections import defaultdict
def findSubset(arr):
N = len (arr)
mp = defaultdict( int )
totSum = 0
s = 0
flag = 0
ans = []
for i in range ( len (arr)):
totSum + = arr[i]
mp[arr[i]] = mp[arr[i]] + 1
arr.sort()
i = N - 1
while (i > = 0 ):
frq = mp[arr[i]]
if ((frq + len (ans))
< (N - (frq + len (ans)))):
for k in range (frq):
ans.append(arr[i])
totSum - = arr[i]
s + = arr[i]
i - = 1
else :
i - = frq
if (s > totSum):
flag = 1
break
if (flag = = 1 ):
for i in range ( len (ans) - 1 , - 1 , - 1 ):
print (ans[i], end = " " )
else :
print ( - 1 )
if __name__ = = "__main__" :
arr = [ 5 , 3 , 2 , 4 , 1 , 2 ]
findSubset(arr)
|
C#
using System;
using System.Collections.Generic;
class GFG{
static void findSubset(List< int > arr)
{
int N = arr.Count;
int i;
Dictionary< int , int > mp = new Dictionary< int , int >();
int totSum = 0;
int s = 0;
int flag = 0;
List< int > ans = new List< int >();
for (i = 0;
i < arr.Count; i++) {
totSum += arr[i];
if (mp.ContainsKey(arr[i]))
mp[arr[i]]=mp[arr[i]]+1;
else
mp.Add(arr[i],1);
}
arr.Sort();
i = N - 1;
while (i >= 0) {
int frq = mp[arr[i]];
if ((frq + ans.Count)
< (N - (frq + ans.Count)))
{
for ( int k = 0; k < frq; k++)
{
ans.Add(arr[i]);
totSum -= arr[i];
s += arr[i];
i--;
}
}
else {
i -= frq;
}
if (s > totSum) {
flag = 1;
break ;
}
}
if (flag == 1) {
for (i = ans.Count - 1;
i >= 0; i--) {
Console.Write(ans[i]+ " " );
}
}
else {
Console.Write(-1);
}
}
public static void Main()
{
List< int > arr = new List< int >(){ 5, 3, 2, 4, 1, 2 };
findSubset(arr);
}
}
|
Javascript
<script>
function findSubset(arr)
{
var N = arr.length;
var mp = new Map();
var totSum = 0;
var s = 0;
var flag = 0;
var ans = [];
for ( var i = 0;
i < arr.length; i++) {
totSum += arr[i];
if (mp.has(arr[i]))
mp.set(arr[i], mp.get(arr[i])+1)
else
mp.set(arr[i], 1);
}
arr.sort((a,b)=> a-b)
var i = N - 1;
while (i >= 0) {
var frq = mp.get(arr[i]);
if ((frq + ans.length)
< (N - (frq + ans.length)))
{
for ( var k = 0; k < frq; k++)
{
ans.push(arr[i]);
totSum -= arr[i];
s += arr[i];
i--;
}
}
else {
i -= frq;
}
if (s > totSum) {
flag = 1;
break ;
}
}
if (flag == 1) {
for (i = ans.length - 1;
i >= 0; i--) {
document.write( ans[i] + " " );
}
}
else {
document.write(-1);
}
}
var arr = [5, 3, 2, 4, 1, 2 ];
findSubset(arr);
</script>
|
Time Complexity: O(N*log N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
24 May, 2021
Like Article
Save Article