# sciPy stats.variation() function | Python

`scipy.stats.variation(arr, axis = None) ` function computes the coefficient of variation. It is defined as the ratio of standard deviation to mean.

Parameters :
arr : [array_like] input array.
axis : [int or tuples of int] axis along which we want to calculate the coefficient of variation.
-> axis = 0 coefficient of variation along the column.
-> axis = 1 coefficient of variation working along the row.

Results : Coefficient of variation of the array with values along specified axis.

Code #1: Use of variation()

 `from` `scipy.stats ``import` `variation  ` `import` `numpy as np ` ` `  `arr ``=` `np.random.randn(``5``, ``5``) ` ` `  `print` `(``"array : \n"``, arr) ` ` `  `# rows: axis = 0, cols: axis = 1 ` ` `  `print` `(``"\nVariation at axis = 0: \n"``, variation(arr, axis ``=` `0``)) ` ` `  `print` `(``"\nVariation at axis = 1: \n"``, variation(arr, axis ``=` `1``)) `

Output:

```array :
[[-1.16536706 -1.29744691 -0.39964651  2.14909277 -1.00669835]
[ 0.79979681  0.91566149 -0.823054    0.9189682  -0.01061181]
[ 0.9532622   0.38630077 -0.79026789 -0.70154086  0.79087801]
[ 0.53553389  1.46409899  1.89903817 -0.35360202 -0.14597738]
[-1.53582875 -0.50077039 -0.23073327  0.32457064 -0.43269088]]

Variation at axis = 0:
[-12.73042404   5.10272979 -14.6476392    2.15882202  -3.64031032]

Variation at axis = 1:
[-3.73200773  1.90419038  5.77300406  1.29451485 -1.27228112]
```

Code #2: How to implement without variation()

 `import` `numpy as np ` ` `  `arr ``=` `np.random.randn(``5``, ``5``) ` ` `  `print` `(``"array : \n"``, arr) ` ` `  `# this function works similar to variation() ` `cv ``=` `lambda` `x: np.std(x) ``/` `np.mean(x) ` ` `  `var1 ``=` `np.apply_along_axis(cv, axis ``=` `0``, arr ``=` `arr) ` `print` `(``"\nVariation at axis = 0: \n"``, var1) ` ` `  `var2 ``=` `np.apply_along_axis(cv, axis ``=` `1``, arr ``=` `arr) ` `print` `(``"\nVariation at axis = 0: \n"``, var2) `

Output:

```array :
[[ 0.51268414 -1.93697931  0.41573223  2.14911168  0.15036631]
[-0.50407207  1.51519879 -0.42217231 -1.09609322  1.93184432]
[-1.07727163  0.27195529 -0.1308108  -1.75406388  0.94046395]
[ 1.23283059 -0.03112461  0.59725109  0.06671002 -0.97537666]
[ 1.1233506   0.97658799 -1.10309113 -1.33142901 -0.28470146]]

Variation at axis = 0:
[ 3.52845174  7.40891024 -4.74078192 -3.57928544  2.85092056]

Variation at axis = 0:
[ 5.04874565  4.22763514 -2.74104828  4.10772935 -8.24126977]
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.