scipy stats.skewtest() function | Python

scipy.stats.skewtest(array, axis=0) function test whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution.

Its formula –

Parameters :
array : Input array or object having the elements.
axis : Axis along which the skewness test is to be computed. By default axis = 0.



Returns : Z-score (Statistics value) and P-value for the hypothesis test on data set.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing skewtest
from scipy.stats import skewtest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '*')
  
  
print( '\nSkewness test for given data :\n', skewtest(y1))

chevron_right


Output :



Skewness test for given data :
 SkewtestResult(statistic=11.874007880556805, pvalue=1.6153913086650964e-32)

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing skewtest
from scipy.stats import skewtest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
  
print( '\nSkewness for data :\n', skewtest(y1))

chevron_right


Output :



Skewness for data :
 SkewtestResult(statistic=16.957642860709516, pvalue=1.689888374767126e-64)


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.