Related Articles
sciPy stats.scoreatpercentile() function | Python
• Last Updated : 13 Feb, 2019

`scipy.stats.scoreatpercentile(a, score, kind='rank')` function helps us to calculate the score at a given percentile of the input array.

The score at percentile = 50 is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of interpolation.

Parameters :
arr : [array_like] input array.
per : [array_like] Percentile at which we need the score.
limit : [tuple] the lower and upper limits within which to compute the percentile.
axis : [int] axis along which we need to calculate the score.

Results : Score at Percentile relative to the array element.

Code #1:

 `# scoreatpercentile``from` `scipy ``import` `stats``import` `numpy as np `` ` `# 1D array  ``arr ``=` `[``20``, ``2``, ``7``, ``1``, ``7``, ``7``, ``34``, ``3``]`` ` `print``(``"arr : "``, arr)  `` ` `print` `(``"\nScore at 50th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``50``))`` ` `print` `(``"\nScore at 90th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``90``))`` ` `print` `(``"\nScore at 10th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``10``))`` ` `print` `(``"\nScore at 100th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``100``))`` ` `print` `(``"\nScore at 30th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``30``))`
Output:
```arr :  [20, 2, 7, 1, 7, 7, 34, 3]

Score at 50th percentile :  7.0

Score at 90th percentile :  24.2

Score at 10th percentile :  1.7

Score at 100th percentile :  34.0

Score at 30th percentile :  3.4
```

Code #2:

 `# scoreatpercentile``from` `scipy ``import` `stats``import` `numpy as np `` ` `arr ``=` `[[``14``, ``17``, ``12``, ``33``, ``44``],   ``       ``[``15``, ``6``, ``27``, ``8``, ``19``],  ``       ``[``23``, ``2``, ``54``, ``1``, ``4``, ]] `` ` `print``(``"arr : "``, arr)  `` ` `print` `(``"\nScore at 50th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``50``))`` ` `print` `(``"\nScore at 50th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``50``, axis ``=` `1``))`` ` `print` `(``"\nScore at 50th percentile : "``, ``       ``stats.scoreatpercentile(arr, ``50``, axis ``=` `0``))`
Output:
```arr :  [[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]

Score at 50th percentile :  15.0

Score at 50th percentile :  [ 17.  15.   4.]

Score at 50th percentile :  [ 15.   6.  27.   8.  19.]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up