Skip to content
Related Articles
sciPy stats.histogram() function | Python
• Last Updated : 13 Feb, 2019

`scipy.stats.histogram(a, numbins, defaultreallimits, weights, printextras)` works to segregate the range into several bins and then returns the number of instances in each bin. This function is used to build the histogram.

Parameters :
arr : [array_like] input array.
numbins : [int] number of bins to use for the histogram. [Default = 10]
defaultlimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.
printextras : [array_like] to print the no, if extra points to the standard output, if true

Results :
– cumulative frequency binned values
– width of each bin
– lower real limit
– extra points.

Code #1:

 `# building the histogram ``import` `scipy``import` `numpy as np ``import` `matplotlib.pyplot as plt`` ` `hist, bin_edges ``=` `scipy.histogram([``1``, ``1``, ``2``, ``2``, ``2``, ``2``, ``3``],``                                       ``bins ``=` `range``(``5``))`` ` `# Checking the results``print` `(``"No. of points in each bin : "``, hist)``print` `(``"Size of the bins          : "``, bin_edges)`` ` `# plotting the histogram``plt.bar(bin_edges[:``-``1``], hist, width ``=` `1``)``plt.xlim(``min``(bin_edges), ``max``(bin_edges))``plt.show()`

Output :

```No. of points in each bin :  [0 2 4 1]
Size of the bins          :  [0 1 2 3 4]
``` Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up