Plotly is a Python library which is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library.
Scatter plot using graph_objects class
Scatter plot are those charts in which data points are represented horizontally and on vertical axis to show that how one variable affect on another variable. The scatter() method of graph_objects class produces a scatter trace. The mode of the property decides the appearance of data points.
Syntax: plotly.graph_objects.Scatter(arg=None, cliponaxis=None, connectgaps=None, customdata=None, customdatasrc=None, dx=None, dy=None, error_x=None, error_y=None, fill=None, fillcolor=None, groupnorm=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hoveron=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, legendgroup=None, line=None, marker=None, meta=None, metasrc=None, mode=None, name=None, opacity=None, orientation=None, r=None, rsrc=None, selected=None, selectedpoints=None, showlegend=None, stackgaps=None, stackgroup=None, stream=None, t=None, text=None, textfont=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, tsrc=None, uid=None, uirevision=None, unselected=None, visible=None, x=None, x0=None, xaxis=None, xcalendar=None, xsrc=None, y=None, y0=None, yaxis=None, ycalendar=None, ysrc=None, **kwargs)
Parameters:
Name |
Description |
dx |
Sets the x coordinate step. |
dy |
Sets the y coordinate step. |
x |
Sets the x coordinates. |
x0 |
Alternate to x. Builds a linear space of x coordinates. Use with dx where x0 is the starting coordinate and dx the step. |
y |
Sets the y coordinates. |
y0 |
Alternate to y. Builds a linear space of y coordinates. Use with dy where y0 is the starting coordinate and dy the step. |
Example:
Python3
import plotly.graph_objects as px
import numpy as np
np.random.seed( 42 )
random_x = np.random.randint( 1 , 101 , 100 )
random_y = np.random.randint( 1 , 101 , 100 )
plot = px.Figure(data = [px.Scatter(
x = random_x,
y = random_y,
mode = 'markers' ,)
])
plot.show()
|
Output:

Presenting Scatter with a Color Dimension
Color scale can be shown using the showscale parameter. This parameter takes a boolean value. If the value is true then the scale is shown otherwise not.
Example:
Python3
import plotly.graph_objects as go
import numpy as np
n = 10000
plot = go.Figure(data = [go.Scatter(
x = np.random.randn(n),
mode = 'markers' ,
marker = dict (
color = np.random.randn(n),
colorscale = 'Viridis' ,
showscale = True
)
)
])
plot.show()
|
Output:

Styling Scatter Plots
In scatter plot can be styled using keywords arguments, let’s see the examples given below:
Example 1: Changing the color of the graph
Python3
import plotly.graph_objects as px
import numpy as np
np.random.seed( 42 )
random_x = np.random.randint( 1 , 101 , 100 )
random_y = np.random.randint( 1 , 101 , 100 )
plot = px.Figure(data = [px.Scatter(
x = random_x,
y = random_y,
mode = 'markers' ,
marker_color = 'rgba(199, 10, 165, .9)' )
])
plot.show()
|
Output:

Example 2: Using tips dataset
Python3
import plotly.graph_objects as px
import plotly.express as go
import numpy as np
df = go.data.tips()
x = df[ 'total_bill' ]
y = df[ 'day' ]
plot = px.Figure(data = [px.Scatter(
x = x,
y = y,
mode = 'markers' ,
marker_color = 'rgba(199, 10, 165, .9)' )
])
plot.update_traces(mode = 'markers' , marker_size = 10 )
plot.show()
|
Output:

Bubble Scatter Plots
The bubble scatter plot can be created using the marker size. Marker size and color are used to control the overall size of the marker. Marker size helps to maintain the color inside the bubble in the graph.
Example:
Python3
import plotly.graph_objects as px
import numpy as np
np.random.seed( 42 )
random_x = np.random.randint( 1 , 101 , 100 )
random_y = np.random.randint( 1 , 101 , 100 )
plot = px.Figure(data = [px.Scatter(
x = random_x,
y = random_y,
mode = 'markers' ,
marker_size = [ 115 , 20 , 30 ])
])
plot.show()
|
Output:

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
30 Aug, 2021
Like Article
Save Article