Replace the column contains the values ‘yes’ and ‘no’ with True and False In Python-Pandas

Let’s discuss a program To change the values from a column that contains the values ‘YES’ and ‘NO’ with TRUE and FALSE
 

First, Let’s see a dataset.

Code:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library
import pandas as pd
   
# load csv file
df = pd.read_csv("supermarkets.csv")
   
# show the dataframe
df

chevron_right


Output : 



Dataframe with yes and no

For downloading the used csv file Click Here.

Now, Let’s see the multiple ways to do this task:

Method 1: Using Series.map()
This method is used to map values from two series having one column the same. 

Syntax: Series.map(arg, na_action=None). 
Return type: Pandas Series with the same as an index as a caller. 

Example: Replace the ‘commissioned’ column contains the values ‘yes’ and ‘no’ with True and False.
Code:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library
import pandas as pd
   
# load csv file
df = pd.read_csv("supermarkets.csv")
   
# replace the ‘commissioned' column contains
# the values 'yes' and 'no'  with 
# True and  False:
df['commissioned'] = df['commissioned'].map(
                   {'yes':True ,'no':False})
  
# show the dataframe
df

chevron_right


Output : 



Dataframe with true and false

Method 2: Using DataFrame.replace()
This method is used to replace a string, regex, list, dictionary, series, number, etc. from a data frame. 

Syntax: DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None) 
Return type: Updated Data frame 

Example: Replace the ‘commissioned’ column contains the values ‘yes’ and ‘no’ with True and False.
Code:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library
import pandas as pd
  
# load csv file
df = pd.read_csv("supermarkets.csv")
  
# replace the ‘commissioned' column 
# contains the values 'yes' and 'no'
#  with True and  False:
df = df.replace({'commissioned': {'yes': True
                                'no': False}})
  
# show the dataframe
df

chevron_right


Output: 

dataframe with true false

 




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.