# Ratio of mth and nth term in an Arithmetic Progression (AP)

Given two values ‘m’ and ‘n’ and the 5th term of an arithmetic progression is zero. The task is to find the ratio of mth and nth term of this AP.

Examples:

```Input: m = 10, n = 20
Output: 1/3

Input: m = 10, n = 15
Output: 1/2
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Acc. to the statement, 5th term is zero. Now understand the concept with an example. As A5=a+4*d=0.
Now, we have to find ratio of m = 10th term and n = 20th term.

A
= A + 9 * d
= A5 + 5 * d
= 0 + 5 * d
= 5 * d

Similarly, A
= A + 19 * d
= A5 + 15 * d
= 0 + 15 * d
= 15 * d

Now, we have to find ratio, so Ans= A / A

Below is the required implementation:

## C++

 `// C++ implementation of above approach ` `#include ` `#define ll long long int ` `using` `namespace` `std; ` ` `  `// Function to find the ratio ` `void` `findRatio(ll m, ll n) ` `{ ` ` `  `    ``ll Am = m - 5, An = n - 5; ` ` `  `    ``// divide numerator by gcd to get ` `    ``// smallest fractional value ` `    ``ll numerator = Am / (__gcd(Am, An)); ` ` `  `    ``// divide denominator by gcd to get ` `    ``// smallest fractional value ` `    ``ll denominator = An / (__gcd(Am, An)); ` ` `  `    ``cout << numerator << ``"/"` `<< denominator << endl; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``// let d=1 as d doesn't affect ratio ` `    ``ll m = 10, n = 20; ` ` `  `    ``findRatio(m, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// java implementation of above approach  ` ` `  `public` `class` `GFG { ` `     `  `    ``// Function to calculate the GCD ` `    ``static` `int` `GCD(``int` `a, ``int` `b) { ` `           ``if` `(b==``0``) ``return` `a; ` `           ``return` `GCD(b,a%b); ` `        ``} ` `     `  `    ``// Function to find the ratio  ` `    ``static` `void` `findRatio(``int` `m,``int`  `n) ` `    ``{ ` `        ``int` `Am = m - ``5``, An = n - ``5` `; ` `         `  `        ``// divide numerator by GCD to get  ` `        ``// smallest fractional value  ` `        ``int` `numerator = Am / GCD(Am, An) ; ` `         `  `        ``// divide denominator by GCD to get  ` `        ``// smallest fractional value  ` `        ``int` `denominator = An / GCD(Am, An) ; ` `         `  `        ``System.out.println(numerator + ``"/"` `+ denominator); ` `    ``} ` `    ``// Driver code  ` `    ``public` `static` `void` `main (String args[]){ ` `         `  `        ``// let d=1 as d doesn't affect ratio   ` `        ``int` `m = ``10``, n = ``20``;  ` `           `  `            ``findRatio(m, n);  ` `           `  `    ``} ` ` `  `// This code is contributed by ANKITRAI1 ` `} `

## Python3

 `# Python3 implementation of above approach  ` `# Function to find the ratio ` ` `  `from` `fractions ``import` `gcd ` `def` `findRatio(m,n): ` `    ``Am ``=` `m ``-` `5` `    ``An ``=` `n ``-` `5` `     `  `    ``# divide numerator by gcd to get  ` `    ``# smallest fractional value  ` `    ``numerator``=``Am``/``/``(gcd(Am,An)) ` ` `  `    ``# divide denominator by gcd to get  ` `    ``#smallest fractional value  ` `    ``denominator ``=` `An ``/``/` `(gcd(Am, An)) ` `    ``print``(numerator,``'/'``,denominator) ` `     `  `# Driver code  ` `# let d=1 as d doesn't affect ratio  ` `if` `__name__``=``=``'__main__'``: ` `    ``m ``=` `10` `    ``n ``=` `20` `    ``findRatio(m, n) ` ` `  `# this code is contributed by sahilshelangia `

## C#

 `// C# implementation of above approach  ` `  `  `using` `System; ` `public` `class` `GFG { ` `      `  `    ``// Function to calculate the GCD ` `    ``static` `int` `GCD(``int` `a, ``int` `b) { ` `           ``if` `(b==0) ``return` `a; ` `           ``return` `GCD(b,a%b); ` `        ``} ` `      `  `    ``// Function to find the ratio  ` `    ``static` `void` `findRatio(``int` `m,``int`  `n) ` `    ``{ ` `        ``int` `Am = m - 5, An = n - 5 ; ` `          `  `        ``// divide numerator by GCD to get  ` `        ``// smallest fractional value  ` `        ``int` `numerator = Am / GCD(Am, An) ; ` `          `  `        ``// divide denominator by GCD to get  ` `        ``// smallest fractional value  ` `        ``int` `denominator = An / GCD(Am, An) ; ` `          `  `        ``Console.Write(numerator + ``"/"` `+ denominator); ` `    ``} ` `    ``// Driver code  ` `    ``public` `static` `void` `Main (){ ` `          `  `        ``// let d=1 as d doesn't affect ratio   ` `        ``int` `m = 10, n = 20;  ` `            `  `            ``findRatio(m, n);  ` `            `  `    ``} ` `  `  ` `  `} `

## PHP

 ` `

Output:

```1/3
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.