# Program for N-th term of Geometric Progression series

• Difficulty Level : Easy
• Last Updated : 25 Feb, 2021

Given first term (a), common ratio (r) and a integer N of the Geometric Progression series, the task is to find Nth term of the series.
Examples :

```Input : a = 2 r = 2, N = 4
Output :
The 4th term of the series is : 16

Input : a = 2 r = 3, N = 5
Output :
The 5th term of the series is : 162```

Approach:

We know the Geometric Progression series is like = 2, 4, 8, 16, 32 …. …
In this series 2 is the stating term of the series .
Common ratio = 4 / 2 = 2 (ratio common in the series).
so we can write the series as :
t1 = a1
t2 = a1 * r(2-1)
t3 = a1 * r(3-1)
t4 = a1 * r(4-1)

tN = a1 * r(N-1)

To find the Nth term in the Geometric Progression series we use the simple formula .

`TN = a1 * r(N-1)`

## C++

 `// CPP Program to find nth term of``// geometric progression``#include `` ` `using` `namespace` `std;` `int` `Nth_of_GP(``int` `a, ``int` `r, ``int` `N)``{``    ``// using formula to find``    ``// the Nth term``    ``// TN = a1 * r(N-1)``    ``return``( a * (``int``)(``pow``(r, N - 1)) );``    ` `}` `// Driver code``int` `main()``{``    ``// starting number``    ``int` `a = 2;``    ` `    ``// Common ratio``    ``int` `r = 3;``    ` `    ``// N th term to be find``    ``int` `N = 5;``    ` `    ``// Display the output``    ``cout << ``"The "``<< N <<``"th term of the series is : "``        ``<< Nth_of_GP(a, r, N);` `    ``return` `0;``}`

## Java

 `// java program to find nth term``// of geometric progression``import` `java.io.*;``import` `java.lang.*;` `class` `GFG``{``    ``public` `static` `int` `Nth_of_GP(``int` `a,``                                ``int` `r,``                                ``int` `N)``    ``{``        ``// using formula to find the Nth``        ``// term TN = a1 * r(N-1)``        ``return` `( a * (``int``)(Math.pow(r, N - ``1``)) );``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``// starting number``        ``int` `a = ``2``;``        ` `        ``// Common ratio``        ``int` `r = ``3``;``        ` `        ``// N th term to be find``        ``int` `N = ``5``;` `        ``// Display the output``        ``System.out.print(``"The "``+ N + ``"th term of the"` `+``                ``" series is : "` `+ Nth_of_GP(a, r, N));``    ``}``}`

## Python3

 `# Python3 Program to find nth``# term of geometric progression``import` `math` `def` `Nth_of_GP(a, r, N):` `    ``# Using formula to find the Nth``    ``# term TN = a1 * r(N-1)``    ``return``( a ``*` `(``int``)(math.``pow``(r, N ``-` `1``)) )``    ` `# Driver code``a ``=` `2` `# Starting number``r ``=` `3` `# Common ratio``N ``=` `5` `# N th term to be find``    ` `print``(``"The"``, N, ``"th term of the series is :"``,``                            ``Nth_of_GP(a, r, N))`  `# This code is contributed by Smitha Dinesh Semwal`

## C#

 `// C# program to find nth term``// of geometric progression``using` `System;` `class` `GFG``{``    ` `    ``public` `static` `int` `Nth_of_GP(``int` `a,``                                ``int` `r,``                                ``int` `N)``    ``{``        ` `        ``// using formula to find the Nth``        ``// term TN = a1 * r(N-1)``        ``return` `( a * (``int``)(Math.Pow(r, N - 1)) );``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``// starting number``        ``int` `a = 2;``        ` `        ``// Common ratio``        ``int` `r = 3;``        ` `        ``// N th term to be find``        ``int` `N = 5;` `        ``// Display the output``        ``Console.Write(``"The "``+ N + ``"th term of the"` `+``            ``" series is : "` `+ Nth_of_GP(a, r, N));``    ``}``}` `// This code is contributed by vt_m`

## PHP

 ``

## Javascript

 ``

Output :

`The 5th term of the series is : 162`

My Personal Notes arrow_drop_up