Given two positive integers N and K and an array F[] consisting of K positive integers. The Nth term of the recurrence relation is given by:
FN = FN – 1 * FN – 2 * FN – 3 *…….* FN – K
The task is to find the Nth term of the given recurrence relation. As the Nth term can be very large, print the Nth term modulo 109 + 7.
Examples:
Input: N = 5, K = 2, F = {1, 2}
Output: 32
Explanation:
The sequence for above input is 1, 2, 2, 4, 8, 32, 256, …….
Each term is the product of its two previous terms.
Therefore the Nth term is 32.
Input: N = 5, K = 3, F = {1, 2, 3}
Output: 648
Explanation:
The sequence for above input is: 1, 2, 3, 6, 36, 648, 139968, …….
Each term is the product of its three previous terms.
Therefore the Nth term is 648.
Naive Approach: The idea is to generate all the N terms of the given sequence using the recurrence relation and print the Nth term obtained as the required answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> #define int long long int using namespace std; int mod = 1e9 + 7; // Function to find the nth term void NthTerm( int F[], int K, int N) { // Stores the terms of // reccurrence relation int ans[N + 1] = { 0 }; // Initialize first K terms for ( int i = 0; i < K; i++) ans[i] = F[i]; // Find all terms from Kth term // to the Nth term for ( int i = K; i <= N; i++) { ans[i] = 1; for ( int j = i - K; j < i; j++) { // Current term is product of // previous K terms ans[i] *= ans[j]; ans[i] %= mod; } } // Print the Nth term cout << ans[N] << endl; } // Driver Code int32_t main() { // Given N, K and F[] int F[] = { 1, 2 }; int K = 2; int N = 5; // Function Call NthTerm(F, K, N); return 0; } |
Java
// Java program for the above approach class GFG{ static int mod = ( int )(1e9 + 7 ); // Function to find the nth term static void NthTerm( int F[], int K, int N) { // Stores the terms of // reccurrence relation int ans[] = new int [N + 1 ]; // Initialize first K terms for ( int i = 0 ; i < K; i++) ans[i] = F[i]; // Find all terms from Kth term // to the Nth term for ( int i = K; i <= N; i++) { ans[i] = 1 ; for ( int j = i - K; j < i; j++) { // Current term is product of // previous K terms ans[i] *= ans[j]; ans[i] %= mod; } } // Print the Nth term System.out.print(ans[N] + "\n" ); } // Driver Code public static void main(String[] args) { // Given N, K and F[] int F[] = { 1 , 2 }; int K = 2 ; int N = 5 ; // Function call NthTerm(F, K, N); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach mod = 1e9 + 7 # Function to find the nth term def NthTerm(F, K, N): # Stores the terms of # reccurrence relation ans = [ 0 ] * (N + 1 ) # Initialize first K terms for i in range (K): ans[i] = F[i] # Find all terms from Kth term # to the Nth term for i in range (K, N + 1 ): ans[i] = 1 for j in range (i - K, i): # Current term is product of # previous K terms ans[i] * = ans[j] ans[i] % = mod # Print the Nth term print (ans[N]) # Driver Code if __name__ = = '__main__' : # Given N, K and F[] F = [ 1 , 2 ] K = 2 N = 5 # Function Call NthTerm(F, K, N) # This code is contributed by mohit kumar 29 |
C#
// C# program for // the above approach using System; class GFG{ static int mod = ( int )(1e9 + 7); // Function to find the // nth term static void NthTerm( int []F, int K, int N) { // Stores the terms of // reccurrence relation int []ans = new int [N + 1]; // Initialize first K terms for ( int i = 0; i < K; i++) ans[i] = F[i]; // Find all terms from Kth // term to the Nth term for ( int i = K; i <= N; i++) { ans[i] = 1; for ( int j = i - K; j < i; j++) { // Current term is product of // previous K terms ans[i] *= ans[j]; ans[i] %= mod; } } // Print the Nth term Console.Write(ans[N] + "\n" ); } // Driver Code public static void Main(String[] args) { // Given N, K and F[] int []F = {1, 2}; int K = 2; int N = 5; // Function call NthTerm(F, K, N); } } // This code is contributed by 29AjayKumar |
32
Time Complexity: O(N*K)
Auxiliary Space: O(N)
Efficient Approach: The idea is to use the deque Data Structure to find the next term using the last K terms. Below are the steps:
- Initialize an empty deque say dq.
- Calculate the product of first K terms and since it is equal to the (K + 1)th term of the recurrence relation, insert it at the end of dq.
- Iterate over the range [K + 2, N] and follow the steps below:
- Let the last element of deque be L and the front element of deque be F.
- Now, calculate the ith term using the formula for ith term = (L * L) / F.
- Since L is the product of elements from (i – 1 – K) to (i – 2). Therefore, to find the ith term, choose the product of elements from (i – K) to (i – 1), and multiply (i – 1)th term (i.e., L) to the product of elements from (i – 1 – K) to (i – 2), to get the product of elements.
- Now, divide this product (L * L) by (i – 1 – K)th term which is F in this case.
- Now, insert the ith term to the back of the deque.
- Pop one element from the front of the deque.
- After completing the above steps, print the last element of the deque.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> #define int long long int using namespace std; int mod = 1e9 + 7; // Function to calculate (x ^ y) % p // fast exponentiation ( O(log y) int power( int x, int y, int p) { // Store the result int res = 1; x = x % p; // Till y is greater than 0 while (y > 0) { // If y is odd if (y & 1) res = (res * x) % p; // Right shift by 1 y = y >> 1; x = (x * x) % p; } // Print the resultant value return res; } // Function to find mod inverse int modInverse( int n, int p) { // Using Fermat Little Theorm return power(n, p - 2, p); } // Function to find Nth term of the // given recurrence relation void NthTerm( int F[], int K, int N) { // Doubly ended queue deque< int > q; // Stores the product of 1st K terms int product = 1; for ( int i = 0; i < K; i++) { product *= F[i]; product %= mod; q.push_back(F[i]); } // Push (K + 1)th term to Dequeue q.push_back(product); for ( int i = K + 1; i <= N; i++) { // First and the last element // of the dequeue int f = *q.begin(); int e = *q.rbegin(); // Calculating the ith term int next_term = ((e % mod * e % mod) % mod * (modInverse(f, mod))) % mod; // Add current term to end // of Dequeue q.push_back(next_term); // Remove the first number // from dequeue q.pop_front(); } // Print the Nth term cout << *q.rbegin() << endl; } // Driver Code int32_t main() { // Given N, K and F[] int F[] = { 1, 2 }; int K = 2; int N = 5; // Function Call NthTerm(F, K, N); return 0; } |
Java
// Java program for the // above approach import java.util.*; class GFG{ static long mod = 1000000007 ; // Function to calculate // (x ^ y) % p fast // exponentiation ( O(log y) static long power( long x, long y, long p) { // Store the result long res = 1 ; x = x % p; // Till y is // greater than 0 while (y > 0 ) { // If y is odd if (y % 2 == 1 ) res = (res * x) % p; // Right shift by 1 y = y >> 1 ; x = (x * x) % p; } // Print the resultant value return res; } // Function to find mod // inverse static long modInverse( long n, long p) { // Using Fermat Little Theorm return power(n, p - 2 , p); } // Function to find Nth term // of the given recurrence // relation static void NthTerm( long F[], long K, long N) { // Doubly ended queue Vector<Long> q = new Vector<>(); // Stores the product of 1st K terms long product = 1 ; for ( int i = 0 ; i < K; i++) { product *= F[i]; product %= mod; q.add(F[i]); } // Push (K + 1)th // term to Dequeue q.add(product); for ( long i = K + 1 ; i <= N; i++) { // First and the last element // of the dequeue long f = q.get( 0 ); long e = q.get(q.size() - 1 ); // Calculating the ith term long next_term = ((e % mod * e % mod) % mod * (modInverse(f, mod))) % mod; // Add current term to end // of Dequeue q.add(next_term); // Remove the first number // from dequeue q.remove( 0 ); } // Print the Nth term System.out.print(q.get(q.size() - 1 ) + "\n" ); } // Driver Code public static void main(String[] args) { // Given N, K and F[] long F[] = { 1 , 2 }; long K = 2 ; long N = 5 ; // Function Call NthTerm(F, K, N); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 program for the # above approach mod = 1000000007 # Function to calculate # (x ^ y) % p fast # exponentiation ( O(log y) def power(x, y, p): # Store the result res = 1 x = x % p # Till y is # greater than 0 while (y > 0 ): # If y is odd if (y % 2 = = 1 ): res = (res * x) % p # Right shift by 1 y = y >> 1 x = (x * x) % p # Print the resultant value return res # Function to find mod # inverse def modInverse(n, p): # Using Fermat Little Theorm return power(n, p - 2 , p); # Function to find Nth term # of the given recurrence # relation def NthTerm(F, K, N): # Doubly ended queue q = [] # Stores the product of # 1st K terms product = 1 for i in range (K): product * = F[i] product % = mod q.append(F[i]) # Push (K + 1)th # term to Dequeue q.append(product) for i in range (K + 1 , N + 1 ): # First and the last element # of the dequeue f = q[ 0 ] e = q[ len (q) - 1 ] # Calculating the ith term next_term = ((e % mod * e % mod) % mod * (modInverse(f, mod))) % mod # Add current term to end # of Dequeue q.append(next_term) # Remove the first number # from dequeue q.remove(q[ 0 ]) # Print the Nth term print (q[ len (q) - 1 ], end = "") # Driver Code if __name__ = = '__main__' : # Given N, K and F F = [ 1 , 2 ] K = 2 N = 5 # Function Call NthTerm(F, K, N) # This code is contributed by Princi Singh |
C#
// C# program for the // above approach using System; using System.Collections.Generic; class GFG{ static long mod = 1000000007; // Function to calculate // (x ^ y) % p fast // exponentiation ( O(log y) static long power( long x, long y, long p) { // Store the result long res = 1; x = x % p; // Till y is // greater than 0 while (y > 0) { // If y is odd if (y % 2 == 1) res = (res * x) % p; // Right shift by 1 y = y >> 1; x = (x * x) % p; } // Print the resultant value return res; } // Function to find mod // inverse static long modInverse( long n, long p) { // Using Fermat Little Theorm return power(n, p - 2, p); } // Function to find Nth term // of the given recurrence // relation static void NthTerm( long []F, long K, long N) { // Doubly ended queue List< long > q = new List< long >(); // Stores the product of 1st K terms long product = 1; for ( int i = 0; i < K; i++) { product *= F[i]; product %= mod; q.Add(F[i]); } // Push (K + 1)th // term to Dequeue q.Add(product); for ( long i = K + 1; i <= N; i++) { // First and the last element // of the dequeue long f = q[0]; long e = q[q.Count - 1]; // Calculating the ith term long next_term = ((e % mod * e % mod) % mod * (modInverse(f, mod))) % mod; // Add current term to end // of Dequeue q.Add(next_term); // Remove the first number // from dequeue q.RemoveAt(0); } // Print the Nth term Console.Write(q[q.Count - 1] + "\n" ); } // Driver Code public static void Main(String[] args) { // Given N, K and F[] long []F = {1, 2}; long K = 2; long N = 5; // Function Call NthTerm(F, K, N); } } // This code is contributed by Rajput-Ji |
32
Time Complexity: O(N)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.