Sum of series with alternate signed squares of AP

We are given the Integer n and also in the next line 2*n integers which represent a Arithmetic Progression series a1, a2, a3…a2n they are in AP. We need to find the sum of a12 – a22 + a32…. + a2n-12 – a2n2 .

Examples :

Input : n = 2
        a[] = {1 2 3 4}
Output : -10
Explanation : 12 - 22 + 
32 42 = -10.

Input : n = 3
        a[] = {2 4 6 8 10 12}
Output : -84

Simple Approach : We one by one find the sum of the square of the series with even terms negative and odd term as positive term .



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find sum of 
// series with alternate signed 
// square AP sums.
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate series sum
int seiresSum(int n, int a[])
{
    int res = 0;
    for (int i = 0; i < 2 * n; i++) 
    {
        if (i % 2 == 0)
            res += a[i] * a[i];
        else
            res -= a[i] * a[i];
    }
    return res;
}
  
// Driver Code
int main()
{
    int n = 2;
    int a[] = { 1, 2, 3, 4 };
    cout << seiresSum(n, a);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of 
// series with alternate signed 
// square AP sums.
import java.io.*;
import java.lang.*;
import java.util.*;
  
class GFG 
{
  
    // function to calculate
    // series sum
    static int seiresSum(int n, 
                         int[] a)
    {
        int res = 0, i;
        for (i = 0; i < 2 * n; i++) 
        {
            if (i % 2 == 0)
                res += a[i] * a[i];
            else
                res -= a[i] * a[i];
        }
        return res;
    }
  
    // Driver code
    public static void main(String args[])
    {
        int n = 2;
        int a[] = { 1, 2, 3, 4 };
        System.out.println(seiresSum(n, a));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find sum
# of series with alternate signed  
# square AP sums.
  
# Function to calculate series sum
def seiresSum(n, a):
    res = 0
      
    for i in range(0, 2 * n):
        if (i % 2 == 0):
            res += a[i] * a[i]
        else:
            res -= a[i] * a[i]
    return res
  
# Driver code
n = 2
a = [1, 2, 3, 4]
print(seiresSum(n, a))
  
# This code is contributed by Ajit.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of 
// series with alternate signed  
// square AP sums.
using System;
  
class GFG 
{
  
    // function to calculate 
    // series sum
    static int seiresSum(int n, 
                         int[] a)
    {
        int res = 0, i;
        for (i = 0; i < 2 * n; i++) 
        {
            if (i % 2 == 0)
                res += a[i] * a[i];
            else
                res -= a[i] * a[i];
        }
        return res;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 2;
        int []a = { 1, 2, 3, 4 };
        Console.WriteLine(seiresSum(n, a));
    }
}
  
//This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of 
// series with alternate signed  
// square AP sums.
  
// function to calculate 
// series sum
function seiresSum($n, $a)
{
    $res = 0;
    for ( $i = 0; $i < 2 * $n; $i++)
    {
        if ($i % 2 == 0)
            $res += $a[$i] * $a[$i];
        else
            $res -= $a[$i] * $a[$i];
    }
    return $res;
}
  
    // Driver Code
    $n = 2;
    $a = array(1, 2, 3, 4);
    echo seiresSum($n, $a);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

-10

Efficient Approach:Use of Arithmetic progression Application

We know that common difference d = a2 – a1 = a3 – a2 = a4 – a3

Result = a12 – a22 + a32…. + a2n-12 – a2n2

= (a1 – a2)*(a1 + a2) + (a3 – a4)*(a3 +a4)+….+(a2n-1 – a2n)*(a2n-1 + a2n)

So as common difference is common to the series then :
(a1 – a2)[a1 + a2 + a3…a2n]

now we can write :

(-d)*(Sum of the term of the 2n term of AP)
(-d)*[((2*n)*(a1 + a2n))/2]
now we know that common difference is : d = (a1 - a2)
Then the difference between : g = (a2n - a1)
So we can conclude that g = d*(2*n - 1)
the we ca replace d by : g/(2*n - 1)

So our result becomes : (n/(2*n - 1)) * (a12 - a2n2)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient CPP program to 
// find sum of series with 
// alternate signed square AP sums.
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate 
// series sum
int seiresSum(int n, int a[])
{
    return n * (a[0] * a[0] - a[2 * n - 1] * 
                a[2 * n - 1]) / (2 * n - 1);
}
  
// Driver code
int main()
{
    int n = 2;
    int a[] = { 1, 2, 3, 4 };
    cout << seiresSum(n, a);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient Java program to  
// find sum of series with 
// alternate signed square AP sums.
import java.io.*;
import java.lang.*;
import java.util.*;
  
class GFG 
{
    static int seiresSum(int n, 
                         int[] a)
    {
    return n * (a[0] * a[0] - a[2 * n - 1] *
                a[2 * n - 1]) / (2 * n - 1);
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 2;
        int a[] = { 1, 2, 3, 4 };
        System.out.println(seiresSum(n, a));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

   
# Efficient Python3 program  
# to find sum of series with  
# alternate signed square AP sums.
  
# Function to calculate
# series sum
def seiresSum(n, a):
  
    return (n * (a[0] * a[0] - a[2 * n - 1] * 
                 a[2 * n - 1]) / (2 * n - 1))
  
# Driver code
n = 2
a = [1, 2, 3, 4
print(int(seiresSum(n, a)))
  
# This code is contributed 
# by Smitha Dinesh Semwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient C# program to find sum 
// of series with alternate signed 
// square AP sums.
using System;
  
class GFG 
{
    static int seiresSum(int n, int[] a)
    {
    return n * (a[0] * a[0] - a[2 * n - 1] *
                a[2 * n - 1]) / (2 * n - 1);
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 2;
        int []a= { 1, 2, 3, 4 };
        Console.WriteLine(seiresSum(n, a));
    }
}
  
// This code is contributed by anuj_67..

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Efficient PHP program to 
// find sum of series with 
// alternate signed square AP sums.
  
// function to calculate
// series sum
function seiresSum( $n, $a)
{
    return $n * ($a[0] * $a[0] - 
                 $a[2 * $n - 1] *
                 $a[2 * $n - 1]) / 
                 (2 * $n - 1);
}
  
    // Driver code
    $n = 2;
    $a = array(1, 2, 3, 4);
    echo seiresSum($n, $a);
      
// This code is contributed by anuj_67..
?>

chevron_right


Output :

-10


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m