Open In App
Related Articles

Queries for number of distinct elements in a subarray

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a array ‘a[]’ of size n and number of queries q. Each query can be represented by two integers l and r. Your task is to print the number of distinct integers in the subarray l to r. Given a[i] <= 106 Examples:

Input : a[] = {1, 1, 2, 1, 3}
        q = 3
        0 4
        1 3
        2 4
Output :3
        2
        3
In query 1, number of distinct integers
in a[0...4] is 3 (1, 2, 3)
In query 2, number of distinct integers 
in a[1..3] is 2 (1, 2)
In query 3, number of distinct integers 
in a[2..4] is 3 (1, 2, 3)

The idea is to use Binary Indexed Tree 

  1. Step 1 : Take an array last_visit of size 10^6 where last_visit[i] holds the rightmost index of the number i in the array a. Initialize this array as -1.
  2. Step 2 : Sort all the queries in ascending order of their right end r.
  3. Step 3 : Create a Binary Indexed Tree in an array bit[]. Start traversing the array ‘a’ and queries simultaneously and check if last_visit[a[i]] is -1 or not. If it is not, update the bit array with value -1 at the idx last_visit[a[i]].
  4. Step 4 : Set last_visit[a[i]] = i and update the bit array bit array with value 1 at idx i.
  5. Step 5 : Answer all the queries whose value of r is equal to i by querying the bit array. This can be easily done as queries are sorted.

C++




// C++ code to find number of distinct numbers
// in a subarray
#include<bits/stdc++.h>
using namespace std;
 
const int MAX = 1000001;
 
// structure to store queries
struct Query
{
    int l, r, idx;
};
 
// cmp function to sort queries according to r
bool cmp(Query x, Query y)
{
    return x.r < y.r;
}
 
// updating the bit array
void update(int idx, int val, int bit[], int n)
{
    for (; idx <= n; idx += idx&-idx)
        bit[idx] += val;
}
 
// querying the bit array
int query(int idx, int bit[], int n)
{
    int sum = 0;
    for (; idx>0; idx-=idx&-idx)
        sum += bit[idx];
    return sum;
}
 
void answeringQueries(int arr[], int n, Query queries[], int q)
{
    // initialising bit array
    int bit[n+1];
    memset(bit, 0, sizeof(bit));
 
    // holds the rightmost index of any number
    // as numbers of a[i] are less than or equal to 10^6
    int last_visit[MAX];
    memset(last_visit, -1, sizeof(last_visit));
 
    // answer for each query
    int ans[q];
    int query_counter = 0;
    for (int i=0; i<n; i++)
    {
        // If last visit is not -1 update -1 at the
        // idx equal to last_visit[arr[i]]
        if (last_visit[arr[i]] !=-1)
            update (last_visit[arr[i]] + 1, -1, bit, n);
 
        // Setting last_visit[arr[i]] as i and updating
        // the bit array accordingly
        last_visit[arr[i]] = i;
        update(i + 1, 1, bit, n);
 
        // If i is equal to r of any query  store answer
        // for that query in ans[]
        while (query_counter < q && queries[query_counter].r == i)
        {
            ans[queries[query_counter].idx] =
                     query(queries[query_counter].r + 1, bit, n)-
                     query(queries[query_counter].l, bit, n);
            query_counter++;
        }
    }
 
    // print answer for each query
    for (int i=0; i<q; i++)
        cout << ans[i] << endl;
}
 
// driver code
int main()
{
    int a[] = {1, 1, 2, 1, 3};
    int n = sizeof(a)/sizeof(a[0]);
    Query queries[3];
    queries[0].l = 0;
    queries[0].r = 4;
    queries[0].idx = 0;
    queries[1].l = 1;
    queries[1].r = 3;
    queries[1].idx = 1;
    queries[2].l = 2;
    queries[2].r = 4;
    queries[2].idx = 2;
    int q = sizeof(queries)/sizeof(queries[0]);
    sort(queries, queries+q, cmp);
    answeringQueries(a, n, queries, q);
    return 0;
}


Java




// Java code to find number of distinct numbers
// in a subarray
import java.io.*;
import java.util.*;
 
class GFG
{
    static int MAX = 1000001;
 
    // structure to store queries
    static class Query
    {
        int l, r, idx;
    }
 
    // updating the bit array
    static void update(int idx, int val,
                        int bit[], int n)
    {
        for (; idx <= n; idx += idx & -idx)
            bit[idx] += val;
    }
 
    // querying the bit array
    static int query(int idx, int bit[], int n)
    {
        int sum = 0;
        for (; idx > 0; idx -= idx & -idx)
            sum += bit[idx];
        return sum;
    }
 
    static void answeringQueries(int[] arr, int n,
                                Query[] queries, int q)
    {
 
        // initialising bit array
        int[] bit = new int[n + 1];
        Arrays.fill(bit, 0);
 
        // holds the rightmost index of any number
        // as numbers of a[i] are less than or equal to 10^6
        int[] last_visit = new int[MAX];
        Arrays.fill(last_visit, -1);
 
        // answer for each query
        int[] ans = new int[q];
        int query_counter = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If last visit is not -1 update -1 at the
            // idx equal to last_visit[arr[i]]
            if (last_visit[arr[i]] != -1)
                update(last_visit[arr[i]] + 1, -1, bit, n);
 
            // Setting last_visit[arr[i]] as i and updating
            // the bit array accordingly
            last_visit[arr[i]] = i;
            update(i + 1, 1, bit, n);
 
            // If i is equal to r of any query store answer
            // for that query in ans[]
            while (query_counter < q && queries[query_counter].r == i)
            {
                ans[queries[query_counter].idx] =
                        query(queries[query_counter].r + 1, bit, n)
                        - query(queries[query_counter].l, bit, n);
                query_counter++;
            }
        }
 
        // print answer for each query
        for (int i = 0; i < q; i++)
            System.out.println(ans[i]);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 1, 1, 2, 1, 3 };
        int n = a.length;
        Query[] queries = new Query[3];
        for (int i = 0; i < 3; i++)
            queries[i] = new Query();
        queries[0].l = 0;
        queries[0].r = 4;
        queries[0].idx = 0;
        queries[1].l = 1;
        queries[1].r = 3;
        queries[1].idx = 1;
        queries[2].l = 2;
        queries[2].r = 4;
        queries[2].idx = 2;
        int q = queries.length;
        Arrays.sort(queries, new Comparator<Query>()
        {
            public int compare(Query x, Query y)
            {
                if (x.r < y.r)
                    return -1;
                else if (x.r == y.r)
                    return 0;
                else
                    return 1;
            }
        });
        answeringQueries(a, n, queries, q);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 code to find number of
# distinct numbers in a subarray
MAX = 1000001
 
# structure to store queries
class Query:
    def __init__(self, l, r, idx):
        self.l = l
        self.r = r
        self.idx = idx
 
# updating the bit array
def update(idx, val, bit, n):
    while idx <= n:
        bit[idx] += val
        idx += idx & -idx
 
# querying the bit array
def query(idx, bit, n):
    summ = 0
    while idx:
        summ += bit[idx]
        idx -= idx & -idx
    return summ
 
def answeringQueries(arr, n, queries, q):
 
    # initialising bit array
    bit = [0] * (n + 1)
 
    # holds the rightmost index of
    # any number as numbers of a[i]
    # are less than or equal to 10^6
    last_visit = [-1] * MAX
 
    # answer for each query
    ans = [0] * q
 
    query_counter = 0
    for i in range(n):
 
        # If last visit is not -1 update -1 at the
        # idx equal to last_visit[arr[i]]
        if last_visit[arr[i]] != -1:
            update(last_visit[arr[i]] + 1, -1, bit, n)
 
        # Setting last_visit[arr[i]] as i and
        # updating the bit array accordingly
        last_visit[arr[i]] = i
        update(i + 1, 1, bit, n)
 
        # If i is equal to r of any query store answer
        # for that query in ans[]
        while query_counter < q and queries[query_counter].r == i:
            ans[queries[query_counter].idx] = \
                        query(queries[query_counter].r + 1, bit, n) - \
                        query(queries[query_counter].l, bit, n)
            query_counter += 1
 
    # print answer for each query
    for i in range(q):
        print(ans[i])
 
# Driver Code
if __name__ == "__main__":
    a = [1, 1, 2, 1, 3]
    n = len(a)
    queries = [Query(0, 4, 0),
               Query(1, 3, 1),
               Query(2, 4, 2)]
    q = len(queries)
 
    queries.sort(key = lambda x: x.r)
    answeringQueries(a, n, queries, q)
 
# This code is contributed by
# sanjeev2552


C#




using System;
using System.Linq;
 
class GFG {
    static int MAX = 1000001;
    // structure to store queries
    public class Query {
        public int l, r, idx;
    }
 
    // updating the bit array
    public static void update(int idx, int val, int[] bit,
                              int n)
    {
        for (; idx <= n; idx += idx & -idx)
            bit[idx] += val;
    }
 
    // querying the bit array
    public static int query(int idx, int[] bit, int n)
    {
        int sum = 0;
        for (; idx > 0; idx -= idx & -idx)
            sum += bit[idx];
        return sum;
    }
 
    public static void answeringQueries(int[] arr, int n,
                                        Query[] queries,
                                        int q)
    {
        // initialising bit array
        int[] bit = new int[n + 1];
        Array.Fill(bit, 0);
 
        // holds the rightmost index of any number
        // as numbers of a[i] are less than or equal to 10^6
        int[] last_visit = new int[MAX];
        Array.Fill(last_visit, -1);
 
        // answer for each query
        int[] ans = new int[q];
        int query_counter = 0;
        for (int i = 0; i < n; i++) {
 
            // If last visit is not -1 update -1 at the
            // idx equal to last_visit[arr[i]]
            if (last_visit[arr[i]] != -1)
                update(last_visit[arr[i]] + 1, -1, bit, n);
 
            // Setting last_visit[arr[i]] as i and updating
            // the bit array accordingly
            last_visit[arr[i]] = i;
            update(i + 1, 1, bit, n);
 
            // If i is equal to r of any query store answer
            // for that query in ans[]
            while (query_counter < q
                   && queries[query_counter].r == i) {
                ans[queries[query_counter].idx]
                    = query(queries[query_counter].r + 1,
                            bit, n)
                      - query(queries[query_counter].l, bit,
                              n);
                query_counter++;
            }
        }
 
        // print answer for each query
        for (int i = 0; i < q; i++)
            Console.WriteLine(ans[i]);
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] a = { 1, 1, 2, 1, 3 };
        int n = a.Length;
        Query[] queries = new Query[3];
        for (int i = 0; i < 3; i++)
            queries[i] = new Query();
        queries[0].l = 0;
        queries[0].r = 4;
        queries[0].idx = 0;
        queries[1].l = 1;
        queries[1].r = 3;
        queries[1].idx = 1;
        queries[2].l = 2;
        queries[2].r = 4;
        queries[2].idx = 2;
        int q = queries.Length;
        Array.Sort(queries, (x, y) => x.r - y.r);
        answeringQueries(a, n, queries, q);
    }
}


Javascript




<script>
 
// JavaScript code to find number of
// distinct numbers in a subarray
const MAX = 1000001
 
// structure to store queries
class Query{
    constructor(l, r, idx){
        this.l = l
        this.r = r
        this.idx = idx
    }
}
 
// updating the bit array
function update(idx, val, bit, n){
    while(idx <= n){
        bit[idx] += val
        idx += idx & -idx
    }
}
 
// querying the bit array
function query(idx, bit, n){
    let summ = 0
    while(idx){
        summ += bit[idx]
        idx -= idx & -idx
    }
    return summ
}
 
function answeringQueries(arr, n, queries, q){
 
    // initialising bit array
    let bit = new Array(n+1).fill(0)
 
    // holds the rightmost index of
    // any number as numbers of a[i]
    // are less than or equal to 10^6
    let last_visit = new Array(MAX).fill(-1)
 
    // answer for each query
    let ans = new Array(q).fill(0);
 
    let query_counter = 0
    for(let i=0;i<n;i++){
 
        // If last visit is not -1 update -1 at the
        // idx equal to last_visit[arr[i]]
        if(last_visit[arr[i]] != -1)
            update(last_visit[arr[i]] + 1, -1, bit, n)
 
        // Setting last_visit[arr[i]] as i and
        // updating the bit array accordingly
        last_visit[arr[i]] = i
        update(i + 1, 1, bit, n)
 
        // If i is equal to r of any query store answer
        // for that query in ans[]
        while(query_counter < q && queries[query_counter].r == i){
            ans[queries[query_counter].idx] = query(queries[query_counter].r + 1, bit, n) - query(queries[query_counter].l, bit, n)
            query_counter += 1
        }
    }
 
    // print answer for each query
    for(let i=0;i<q;i++)
        document.write(ans[i],"</br>")
}
 
// Driver Code
 
let a = [1, 1, 2, 1, 3]
let n = a.length
let queries = [new Query(0, 4, 0),new Query(1, 3, 1),new Query(2, 4, 2)]
let q = queries.length
 
queries.sort((x,y) => x.r-y.r)
answeringQueries(a, n, queries, q)
 
// This code is contributed by shinjanpatra
 
</script>


Output:

3
2
3

Time Complexity: O((n+q)*log(n))

Auxiliary Space: O(n+q+MAX)

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Apr, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials