Given a array ‘a[]’ of size n and number of queries q. Each query can be represented by two integers l and r. Your task is to print the number of distinct integers in the subarray l to r.
Given a[i] <= 106
Examples:
Input : a[] = {1, 1, 2, 1, 3} q = 3 0 4 1 3 2 4 Output :3 2 3 In query 1, number of distinct integers in a[0...4] is 3 (1, 2, 3) In query 2, number of distinct integers in a[1..3] is 2 (1, 2) In query 3, number of distinct integers in a[2..4] is 3 (1, 2, 3)
The idea is to use Binary Indexed Tree
- Step 1 : Take an array last_visit of size 10^6 where last_visit[i] holds the rightmost index of the number i in the array a. Initialize this array as -1.
- Step 2 : Sort all the queries in ascending order of their right end r.
- Step 3 : Create a Binary Indexed Tree in an array bit[]. Start traversing the array ‘a’ and queries simultaneously and check if last_visit[a[i]] is -1 or not. If it is not, update the bit array with value -1 at the idx last_visit[a[i]].
- Step 4 : Set last_visit[a[i]] = i and update the bit array bit array with value 1 at idx i.
- Step 5 : Answer all the queries whose value of r is equal to i by querying the bit array. This can be easily done as queries are sorted.
C++
// C++ code to find number of distinct numbers // in a subarray #include<bits/stdc++.h> using namespace std; const int MAX = 1000001; // structure to store queries struct Query { int l, r, idx; }; // cmp function to sort queries according to r bool cmp(Query x, Query y) { return x.r < y.r; } // updating the bit array void update( int idx, int val, int bit[], int n) { for (; idx <= n; idx += idx&-idx) bit[idx] += val; } // querying the bit array int query( int idx, int bit[], int n) { int sum = 0; for (; idx>0; idx-=idx&-idx) sum += bit[idx]; return sum; } void answeringQueries( int arr[], int n, Query queries[], int q) { // initialising bit array int bit[n+1]; memset (bit, 0, sizeof (bit)); // holds the rightmost index of any number // as numbers of a[i] are less than or equal to 10^6 int last_visit[MAX]; memset (last_visit, -1, sizeof (last_visit)); // answer for each query int ans[q]; int query_counter = 0; for ( int i=0; i<n; i++) { // If last visit is not -1 update -1 at the // idx equal to last_visit[arr[i]] if (last_visit[arr[i]] !=-1) update (last_visit[arr[i]] + 1, -1, bit, n); // Setting last_visit[arr[i]] as i and updating // the bit array accordingly last_visit[arr[i]] = i; update(i + 1, 1, bit, n); // If i is equal to r of any query store answer // for that query in ans[] while (query_counter < q && queries[query_counter].r == i) { ans[queries[query_counter].idx] = query(queries[query_counter].r + 1, bit, n)- query(queries[query_counter].l, bit, n); query_counter++; } } // print answer for each query for ( int i=0; i<q; i++) cout << ans[i] << endl; } // driver code int main() { int a[] = {1, 1, 2, 1, 3}; int n = sizeof (a)/ sizeof (a[0]); Query queries[3]; queries[0].l = 0; queries[0].r = 4; queries[0].idx = 0; queries[1].l = 1; queries[1].r = 3; queries[1].idx = 1; queries[2].l = 2; queries[2].r = 4; queries[2].idx = 2; int q = sizeof (queries)/ sizeof (queries[0]); sort(queries, queries+q, cmp); answeringQueries(a, n, queries, q); return 0; } |
Java
// Java code to find number of distinct numbers // in a subarray import java.io.*; import java.util.*; class GFG { static int MAX = 1000001 ; // structure to store queries static class Query { int l, r, idx; } // updating the bit array static void update( int idx, int val, int bit[], int n) { for (; idx <= n; idx += idx & -idx) bit[idx] += val; } // querying the bit array static int query( int idx, int bit[], int n) { int sum = 0 ; for (; idx > 0 ; idx -= idx & -idx) sum += bit[idx]; return sum; } static void answeringQueries( int [] arr, int n, Query[] queries, int q) { // initialising bit array int [] bit = new int [n + 1 ]; Arrays.fill(bit, 0 ); // holds the rightmost index of any number // as numbers of a[i] are less than or equal to 10^6 int [] last_visit = new int [MAX]; Arrays.fill(last_visit, - 1 ); // answer for each query int [] ans = new int [q]; int query_counter = 0 ; for ( int i = 0 ; i < n; i++) { // If last visit is not -1 update -1 at the // idx equal to last_visit[arr[i]] if (last_visit[arr[i]] != - 1 ) update(last_visit[arr[i]] + 1 , - 1 , bit, n); // Setting last_visit[arr[i]] as i and updating // the bit array accordingly last_visit[arr[i]] = i; update(i + 1 , 1 , bit, n); // If i is equal to r of any query store answer // for that query in ans[] while (query_counter < q && queries[query_counter].r == i) { ans[queries[query_counter].idx] = query(queries[query_counter].r + 1 , bit, n) - query(queries[query_counter].l, bit, n); query_counter++; } } // print answer for each query for ( int i = 0 ; i < q; i++) System.out.println(ans[i]); } // Driver Code public static void main(String[] args) { int a[] = { 1 , 1 , 2 , 1 , 3 }; int n = a.length; Query[] queries = new Query[ 3 ]; for ( int i = 0 ; i < 3 ; i++) queries[i] = new Query(); queries[ 0 ].l = 0 ; queries[ 0 ].r = 4 ; queries[ 0 ].idx = 0 ; queries[ 1 ].l = 1 ; queries[ 1 ].r = 3 ; queries[ 1 ].idx = 1 ; queries[ 2 ].l = 2 ; queries[ 2 ].r = 4 ; queries[ 2 ].idx = 2 ; int q = queries.length; Arrays.sort(queries, new Comparator<Query>() { public int compare(Query x, Query y) { if (x.r < y.r) return - 1 ; else if (x.r == y.r) return 0 ; else return 1 ; } }); answeringQueries(a, n, queries, q); } } // This code is contributed by // sanjeev2552 |
Python3
# Python3 code to find number of # distinct numbers in a subarray MAX = 1000001 # structure to store queries class Query: def __init__( self , l, r, idx): self .l = l self .r = r self .idx = idx # updating the bit array def update(idx, val, bit, n): while idx < = n: bit[idx] + = val idx + = idx & - idx # querying the bit array def query(idx, bit, n): summ = 0 while idx: summ + = bit[idx] idx - = idx & - idx return summ def answeringQueries(arr, n, queries, q): # initialising bit array bit = [ 0 ] * (n + 1 ) # holds the rightmost index of # any number as numbers of a[i] # are less than or equal to 10^6 last_visit = [ - 1 ] * MAX # answer for each query ans = [ 0 ] * q query_counter = 0 for i in range (n): # If last visit is not -1 update -1 at the # idx equal to last_visit[arr[i]] if last_visit[arr[i]] ! = - 1 : update(last_visit[arr[i]] + 1 , - 1 , bit, n) # Setting last_visit[arr[i]] as i and # updating the bit array accordingly last_visit[arr[i]] = i update(i + 1 , 1 , bit, n) # If i is equal to r of any query store answer # for that query in ans[] while query_counter < q and queries[query_counter].r = = i: ans[queries[query_counter].idx] = \ query(queries[query_counter].r + 1 , bit, n) - \ query(queries[query_counter].l, bit, n) query_counter + = 1 # print answer for each query for i in range (q): print (ans[i]) # Driver Code if __name__ = = "__main__" : a = [ 1 , 1 , 2 , 1 , 3 ] n = len (a) queries = [Query( 0 , 4 , 0 ), Query( 1 , 3 , 1 ), Query( 2 , 4 , 2 )] q = len (queries) queries.sort(key = lambda x: x.r) answeringQueries(a, n, queries, q) # This code is contributed by # sanjeev2552 |
3 2 3
This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.