Skip to content
Related Articles

Related Articles

Improve Article

Python | Pandas dataframe.cov()

  • Last Updated : 16 Nov, 2018

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.cov() is used to compute pairwise covariance of columns.
If some of the cells in a column contain NaN value, then it is ignored.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: DataFrame.cov(min_periods=None)



Parameters:
min_periods : Minimum number of observations required per pair of columns to have a valid result.

Returns: y : DataFrame

Example #1: Use cov() function to find the covariance between the columns of the dataframe.

Note : Any non-numeric columns will be ignored.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4], 
                   "B":[11, 2, 4, 3],
                   "C":[4, 3, 8, 5],
                   "D":[5, 4, 2, 8]})
  
# Print the dataframe
df

Output :

Now find the covariance among the columns of the data frame




# To find the covariance 
df.cov()

Output :

 

Example #2: Use cov() function to find the covariance between the columns of the dataframe which are having NaN value.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, None, 4],
                   "B":[None, 2, 4, 3],
                   "C":[4, 3, 8, 5], 
                   "D":[5, 4, 2, None]})
  
# To find the covariance 
df.cov()

Output :




My Personal Notes arrow_drop_up
Recommended Articles
Page :