Related Articles

Related Articles

Python | Pandas Series.to_csv()
  • Last Updated : 24 Jun, 2020

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.to_csv() function write the given series object to a comma-separated values (csv) file/format.

Syntax: Series.to_csv(*args, **kwargs)

Parameter :
path_or_buf : File path or object, if None is provided the result is returned as a string.
sep : String of length 1. Field delimiter for the output file.
na_rep : Missing data representation.
float_format : Format string for floating point numbers.
columns : Columns to write
header : If a list of strings is given it is assumed to be aliases for the column names.
index : Write row names (index).
index_label : Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used.
mode : Python write mode, default ‘w’.
encoding : A string representing the encoding to use in the output file.
compression : Compression mode among the following possible values: {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}.
quoting : Defaults to csv.QUOTE_MINIMAL.
quotechar : String of length 1. Character used to quote fields.

Returns : None or str



Example #1: Use Series.to_csv() function to convert the given series object to csv format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio', 'Moscow'])
  
# Create the Datetime Index
didx = pd.DatetimeIndex(start ='2014-08-01 10:00', freq ='W'
                     periods = 6, tz = 'Europe / Berlin'
  
# set the index
sr.index = didx
  
# Print the series
print(sr)

chevron_right


Output :

Now we will use Series.to_csv() function to convert the given Series object into a comma separated format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# convert to comma-separated
sr.to_csv()

chevron_right


Output :


As we can see in the output, the Series.to_csv() function has converted the given Series object into a comma-separated format.
 
Example #2: Use Series.to_csv() function to convert the given series object to csv format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the Series
sr = pd.Series([19.5, 16.8, None, 22.78, None, 20.124, None, 18.1002, None])
  
# Print the series
print(sr)

chevron_right


Output :

Now we will use Series.to_csv() function to convert the given Series object into a comma separated format.

filter_none

edit
close

play_arrow

link
brightness_4
code

# convert to comma-separated
sr.to_csv()

chevron_right


Output :

As we can see in the output, the Series.to_csv() function has converted the given Series object into a comma-separated format.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :