Skip to content
Related Articles
Open in App
Not now

Related Articles

Python | Pandas dataframe.cov()

Improve Article
Save Article
  • Last Updated : 16 Nov, 2018
Improve Article
Save Article

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.cov() is used to compute pairwise covariance of columns.
If some of the cells in a column contain NaN value, then it is ignored.

Syntax: DataFrame.cov(min_periods=None)

Parameters:
min_periods : Minimum number of observations required per pair of columns to have a valid result.

Returns: y : DataFrame

Example #1: Use cov() function to find the covariance between the columns of the dataframe.

Note : Any non-numeric columns will be ignored.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4], 
                   "B":[11, 2, 4, 3],
                   "C":[4, 3, 8, 5],
                   "D":[5, 4, 2, 8]})
  
# Print the dataframe
df

Output :

Now find the covariance among the columns of the data frame




# To find the covariance 
df.cov()

Output :

 

Example #2: Use cov() function to find the covariance between the columns of the dataframe which are having NaN value.




# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, None, 4],
                   "B":[None, 2, 4, 3],
                   "C":[4, 3, 8, 5], 
                   "D":[5, 4, 2, None]})
  
# To find the covariance 
df.cov()

Output :


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!