Program to find X, Y and Z intercepts of a plane

In this article, it is explained how to find the X, Y and Z intercepts of a plane.

There are two ways to find the intercepts:

  • Case 1: When the general equation of the plane is given.
    Examples:



    Input: A = -6, B = 5, C = -3, D = 9
    Output: 1.5
    -1.8
    3.0

    Input: A = 7, B = 4, C = 5, D = -7
    Output: 1.0
    1.75
    1.4

    Approach: The result can be computed by following the below steps:

    • Convert general equation of a plane Ax + By + Cz + D = 0 to Ax + By + Cz = – D
    • Divide by -D on both side of equation
    • So, the equation becomes x/(-D/A) + y/(-D/B) + z(-D/C) = 1
    • Above equation is in the intercept form of a plane. Therefore,
      X intercepts will be = -D/A
      Y intercepts will be = -D/B
      Z intercepts will be = -D/C

    Below is the implementation of the above approach:

    C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ program to find the 
    // X, Y and Z intercepts of a plane
    #include<iostream>
    using namespace std;
      
    float * XandYandZintercept(float A, float B,
                                float C, float D)
    {
            static float rslt[3];
              
            // For finding the x-intercept 
            // put y = 0 and z = 0 
            float x = -D / A ;
          
            // For finding the y-intercept 
            // put x = 0 and z = 0 
            float y = -D / B ;
          
            // For finding the z-intercept 
            // put x = 0 and y = 0 
            float z = -D / C ;
              
            rslt[0] = x;
            rslt[1] = y;
            rslt[2] = z;
              
            return rslt; 
    }
          
    // Driver code 
    int main () 
    {
        int A = 2 ;
        int B = 5 ;
        int C = 7;
        int D = 8 ;
              
        float *rslt = XandYandZintercept(A, B, C, D);
              
        for(int i = 0; i < 3 ; i++)
        {
            cout << rslt[i] << " ";
        }
          
    }
      
    // This code is contributed by ANKITKUMAR34

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java program to find the 
    // X, Y and Z intercepts of a plane
    class GFG 
    {
          
        static float[] XandYandZintercept(float A, 
                        float B, float C, float D)
        {
            float rslt[] = new float[3];
              
            // For finding the x-intercept 
            // put y = 0 and z = 0 
            float x = -D / A ;
          
            // For finding the y-intercept 
            // put x = 0 and z = 0 
            float y = -D / B ;
          
            // For finding the z-intercept 
            // put x = 0 and y = 0 
            float z = -D / C ;
              
            rslt[0] = x;
            rslt[1] = y;
            rslt[2] = z;
              
            return rslt; 
        }
          
        // Driver code 
        public static void main (String[] args) 
        {
            int A = 2 ;
            int B = 5 ;
            int C = 7;
            int D = 8 ;
              
            float rslt[] = XandYandZintercept(A, B, C, D);
              
            for(int i = 0; i < 3 ; i++)
            {
                System.out.print(rslt[i] + " ");
            }
        }
    }
      
    // This code is contributed by AnkitRai01

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# program to find the 
    // X, Y and Z intercepts of a plane
    using System;
      
    class GFG 
    {
          
        static float[] XandYandZintercept(float A, 
                        float B, float C, float D)
        {
            float []rslt = new float[3];
              
            // For finding the x-intercept 
            // put y = 0 and z = 0 
            float x = -D / A ;
          
            // For finding the y-intercept 
            // put x = 0 and z = 0 
            float y = -D / B ;
          
            // For finding the z-intercept 
            // put x = 0 and y = 0 
            float z = -D / C ;
              
            rslt[0] = x;
            rslt[1] = y;
            rslt[2] = z;
              
            return rslt; 
        }
          
        // Driver code 
        public static void Main() 
        {
            int A = 2 ;
            int B = 5 ;
            int C = 7;
            int D = 8 ;
              
            float []rslt = XandYandZintercept(A, B, C, D);
              
            for(int i = 0; i < 3 ; i++)
            {
                Console.Write(rslt[i] + " ");
            }
        }
    }
      
    // This code is contributed by AnkitRai01

    chevron_right

    
    

    Python3

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # Python program to find the 
    # X, Y and Z intercepts of a plane
      
    def XandYandZintercept(A, B, C, D): 
      
        # For finding the x-intercept 
        # put y = 0 and z = 0
        x = -D / A
      
        # For finding the y-intercept 
        # put x = 0 and z = 0 
        y = -D /
      
        # For finding the z-intercept 
        # put x = 0 and y = 0
        z = -D / C
        return [x, y, z]
      
    # Driver code
    A = 2
    B = 5
    C = 7
    D = 8
    print(XandYandZintercept(A, B, C, D))

    chevron_right

    
    

    Output:

    [-4.0, -1.6, -1.1428571428571428]
    
  • Case 2: When 3 non-collinear points are given.

    Examples:

    Input: A = (3, 17, 2), B = (4, 8, 5), C = (1, 8, 3)
    Output: 1.5
    -1.8
    3.0

    Input: A = (2, 11, 4), B = (7, 8, 3), C = (9, 18, 23)
    Output: 1.0
    1.75
    1.4

    Approach: The idea is to find the cartesian form of the equation using three points.

    • When three points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) are given, the determinant value of the following matrix gives the cartesian form.
    • | (x – x1) (y – y1) (z – z1) |
      | (x2 – x1) (y2 – y1) (z2 – z1)| = 0
      | (x3 – x1) (y3 – y1) (z3 – z1)|
    • Once the above determinant is found, then the intercepts can be found using the first mentioned approach.

    Below is the implementation of the above approach:

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # Python program to find the 
    # X, Y and Z intercepts of a plane
      
    def XandYandZintercept(A, B, C, D): 
       
        # For finding the x-intercept 
        # put y = 0 and z = 0
        x = -D / A
      
        # For finding the y-intercept 
        # put x = 0 and z = 0 
        y = -D /
      
        # For finding the z-intercept 
        # put x = 0 and y = 0
        z = -D / C
        return [x, y, z]
       
    def equation_plane(p, q, r): 
        x1 = p[0]
        y1 = p[1]
        z1 = p[2]
        x2 = q[0]
        y2 = q[1]
        z2 = q[2]
        x3 = r[0]
        y3 = r[1]
        z3 = r[2]
          
        # For Finding value of A, B, C, D
        a1 = x2 - x1
        b1 = y2 - y1
        c1 = z2 - z1
        a2 = x3 - x1
        b2 = y3 - y1
        c2 = z3 - z1
        A = b1 * c2 - b2 * c1
        B = a2 * c1 - a1 * c2
        C = a1 * b2 - b1 * a2
        D = (- A * x1 - B * y1 - C * z1)
          
        # Calling the first created function 
        print(XandYandZintercept(A, B, C, D)) 
          
    # Driver Code 
    x1 =-1
    y1 = 2
    z1 = 1
    x2 = 0
    y2 =-3
    z2 = 2
    x3 = 1
    y3 = 1
    z3 =-4
    equation_plane((x1, y1, z1), (x2, y2, z2), (x3, y3, z3))

    chevron_right

    
    

    Output:

    [-0.11538461538461539, -0.42857142857142855, -0.3333333333333333]
    


My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, ANKITKUMAR34