Find the foot of perpendicular of a point in a 3 D plane

Given a point (x1, y1, z1) in 3-D and coefficients of the equation of plane, we have to find the foot of perpendicular of a point in a 3 D plane.

Examples:

Input: a = 1, b = -2, c = 0, d = 0, x = -1, y = 3, z = 4
Output: x2 = 0.4 y2 = 0.2 z2 = 4.0



Input: a = 2, b = -1, c = 1, d = 3, x = 1, y = 3, z = 4
Output: x2 = -1.0 y2 = 4.0 z2 = 3.0

Approach: Equation of plane is given as ax + by + cz + d = 0. Therefore, the direction ratios of the normal to the plane are (a, b, c). Let N be the foot of perpendicular from given point to the given plane so, line PN has directed ratios (a, b, c) and it passes through P(x1, y1, z1).

The equation of line PN will be as:-



(x – x1) / a = (y – y1) / b = (z – z1) / c = k

Hence any point on line PN can be written as:-

x = a * k + x1
y = b * k + y1
z = c * k + z1

since N lies in both line and plane so will satisfy(ax + by + cz + d = 0).

=>a * (a * k + x1) + b * (b * k + y1) + c * (c * k + z1) + d = 0.
=>a * a * k + a * x1 + b * b * k + b * y1 + c * c * k + c * z1 + d = 0.
=>(a * a + b * b + c * c)k = -a * x1 – b * y1 – c * z1 – d.
=>k = (-a * x1 – b * y1 – c * z1 – d) / (a * a + b * b + c * c).

Now, the coordinates of Point N in terms of k will be:-

x2 = a * k + x1
y2 = b * k + y1
z2 = c * k + z1

Below is the implementation of the above:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find
// foot of perpendicular
// of a point in a 3 D plane.
#include <bits/stdc++.h>
#include <iomanip>
#include <iostream>
#include <math.h>
using namespace std;
  
// Function to find foot of perpendicular
void foot(float a, float b,
          float c, float d,
          float x1, float y1,
          float z1)
{
    float k = (-a * x1 - b * y1 - c * z1 - d) / (float)(a * a + b * b + c * c);
    float x2 = a * k + x1;
    float y2 = b * k + y1;
    float z2 = c * k + z1;
  
    std::cout << std::fixed;
    std::cout << std::setprecision(1);
    cout << " x2 = " << x2;
    cout << " y2 = " << y2;
    cout << " z2 = " << z2;
}
  
// Driver Code
int main()
{
    float a = 1;
    float b = -2;
    float c = 0;
    float d = 0;
    float x1 = -1;
    float y1 = 3;
    float z1 = 4;
  
    // function call
    foot(a, b, c, d, x1, y1, z1);
    return 0;
}
// This code is contributed  by Amber_Saxena.

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find
// foot of perpendicular
// of a point in a 3 D plane.
import java.util.*;
import java.text.*;
  
class solution
{
  
// Function to find foot of perpendicular
static void foot(float a, float b,
        float c, float d,
        float x1, float y1,
        float z1)
{
    float k = (-a * x1 - b * y1 - c * z1 - d) / (float)(a * a + b * b + c * c);
    float x2 = a * k + x1;
    float y2 = b * k + y1;
    float z2 = c * k + z1;
    DecimalFormat form = new DecimalFormat("0.0");
    System.out.print(" x2 = " +form.format(x2));
    System.out.print(" y2 = " +form.format(y2));
    System.out.print( " z2 = " +form.format(z2));
}
  
// Driver Code
public static void main(String arr[])
{
    float a = 1;
    float b = -2;
    float c = 0;
    float d = 0;
    float x1 = -1;
    float y1 = 3;
    float z1 = 4;
  
    // function call
    foot(a, b, c, d, x1, y1, z1);
  
}
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find 
# foot of perpendicular 
# of a point in a 3 D plane. 
  
# Function to find foot of perpendicular 
def foot(a, b, c, d, x1, y1, z1) :
  
    k = (-a * x1 - b * y1 - c * z1 - d) / (a * a + b * b + c * c); 
    x2 = a * k + x1; 
    y2 = b * k + y1; 
    z2 = c * k + z1; 
  
    print("x2 =",round(x2,1)) 
    print("y2 =",round(y2,1))
    print("z2 =",round(z2,1))
  
  
# Driver Code 
if __name__ == "__main__"
  
    a = 1
    b = -2 
    c = 0
    d = 0 
    x1 = -1 
    y1 = 3
    z1 = 4 
  
    # function call 
    foot(a, b, c, d, x1, y1, z1) 
  
# This code is contributed by Ryuga 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find 
// foot of perpendicular 
// of a point in a 3 D plane. 
using System;
using System.Globalization;
  
class GFG
  
// Function to find foot of perpendicular 
static void foot(float a, float b, 
        float c, float d, 
        float x1, float y1, 
        float z1) 
    float k = (-a * x1 - b * y1 - c * z1 - d) / 
                (float)(a * a + b * b + c * c); 
    float x2 = a * k + x1; 
    float y2 = b * k + y1; 
    float z2 = c * k + z1; 
    NumberFormatInfo form = new NumberFormatInfo();
    form.NumberDecimalSeparator = ".";
    Console.Write(" x2 = " + x2.ToString(form)); 
    Console.Write(" y2 = " + y2.ToString(form)); 
    Console.Write( " z2 = " + z2.ToString(form)); 
  
// Driver Code 
public static void Main(String []arr) 
    float a = 1; 
    float b = -2; 
    float c = 0; 
    float d = 0; 
    float x1 = -1; 
    float y1 = 3; 
    float z1 = 4; 
  
    // function call 
    foot(a, b, c, d, x1, y1, z1); 
  
// This code contributed by Rajput-Ji

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP program to find foot of perpendicular
// of a point in a 3 D plane.
  
// Function to find foot of perpendicular
function foot($a, $b, $c, $d, $x1, $y1, $z1)
{
    $k = (-$a * $x1 - $b * $y1 - $c * $z1 - $d) / 
                  ($a * $a + $b * $b + $c * $c);
    $x2 = $a * $k + $x1;
    $y2 = $b * $k + $y1;
    $z2 = $c * $k + $z1;
  
    echo "x2 = " . round($x2, 1);
    echo " y2 = " . round($y2, 1);
    echo " z2 = " . round($z2, 1);
}
  
// Driver Code
$a = 1; $b = -2; $c = 0; $d = 0;
$x1 = -1; $y1 = 3; $z1 = 4;
  
// function call
foot($a, $b, $c, $d, $x1, $y1, $z1);
  
// This code is contributed by ita_c
?>

chevron_right


Output:

x2 = 0.4 y2 = 0.2 z2 = 4.0


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.