Python Program for Number of jump required of given length to reach a point of form (d, 0) from origin in 2D plane

Given three positive integers a, b and d. You are currently at origin (0, 0) on infinite 2D coordinate plane. You are allowed to jump on any point in the 2D plane at euclidean distance either equal to a or b from your current position. The task is to find the minimum number of jump required to reach (d, 0) from (0, 0).

Examples:

Input : a = 2, b = 3, d = 1 
Output : 2
First jump of length a = 2, (0, 0) -> (1/2, √15/2)
Second jump of length a = 2, (1/2, √15/2) -> (1, 0)
Thus, only two jump are required to reach 
(1, 0) from (0, 0).

Input : a = 3, b = 4, d = 11 
Output : 3
(0, 0) -> (4, 0) using length b = 4
(4, 0) -> (8, 0) using length b = 4
(8, 0) -> (11, 0) using length a = 3
filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to find the minimum number
# of jump required to reach 
# (d, 0) from (0, 0)
  
def minJumps(a, b, d):
      
    temp = a
    a = min(a, b)
    b = max(temp, b)
      
    if (d >= b):
        return (d + b - 1) / b
      
    # if d is 0
    if (d == 0):
        return 0
   
    # if d is equal to a.
    if (d == a):
        return 1
   
    # else make triangle, and only 2 
    # steps required.
    return 2
         
# main()
a = 3
b = 4
d = 11
print (int(minJumps(a, b, d)))
  
# Contributed by _omg

chevron_right


Output



3

Please refer complete article on Number of jump required of given length to reach a point of form (d, 0) from origin in 2D plane for more details!




My Personal Notes arrow_drop_up
Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.