Print the degree of every node from the given Prufer sequence

Given a Prufer sequence, the task is to find the degrees of all the nodes of the tree made by the prufer sequence.

Examples:

Input: arr[] = {4, 1, 3, 4} 
Output: 2 1 2 3 1 1

The tree is:
2----4----3----1----5
     |
     6 

Input: arr[] = {1, 2, 2} 
Output: 2 3 1 1 1

A simple approach is to create the tree using the Prufer sequence and then find the degree of all the nodes.

Efficient approach: Create a degree[] array of size 2 more than the length of the prufer sequence, since the length of prufer sequence is N – 2 if N is the number of nodes. Initially, fill the degree array with 1. Iterate in the Prufer sequence and increase the frequency in the degree table for every element. This method works because the frequency of a node in the Prufer sequence is one less than the degree in the tree.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the degrees of every
// node in the tree made by
// the given Prufer sequence
void printDegree(int prufer[], int n)
{
    int node = n + 2;
  
    // Hash-table to mark the
    // degree of every node
    int degree[n + 2 + 1];
  
    // Initially let all the degrees be 1
    for (int i = 1; i <= node; i++)
        degree[i] = 1;
  
    // Increase the count of the degree
    for (int i = 0; i < n; i++)
        degree[prufer[i]]++;
  
    // Print the degree of every node
    for (int i = 1; i <= node; i++) {
        cout << degree[i] << " ";
    }
}
  
// Driver code
int main()
{
    int a[] = { 4, 1, 3, 4 };
    int n = sizeof(a) / sizeof(a[0]);
    printDegree(a, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
    // Function to print the degrees of every
    // node in the tree made by
    // the given Prufer sequence
    static void printDegree(int prufer[], int n) 
    {
        int node = n + 2;
  
        // Hash-table to mark the
        // degree of every node
        int[] degree = new int[n + 2 + 1];
  
        // Initially let all the degrees be 1
        for (int i = 1; i <= node; i++)
        {
            degree[i] = 1;
        }
  
        // Increase the count of the degree
        for (int i = 0; i < n; i++) 
        {
            degree[prufer[i]]++;
        }
  
        // Print the degree of every node
        for (int i = 1; i <= node; i++) 
        {
            System.out.print(degree[i] + " ");
        }
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        int a[] = {4, 1, 3, 4};
        int n = a.length;
        printDegree(a, n);
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to print the degrees of 
# every node in the tree made by 
# the given Prufer sequence 
def printDegree(prufer, n): 
   
    node = n + 2 
  
    # Hash-table to mark the 
    # degree of every node 
    degree = [1] * (n + 2 + 1
  
    # Increase the count of the degree 
    for i in range(0, n): 
        degree[prufer[i]] += 1 
  
    # Print the degree of every node 
    for i in range(1, node+1):  
        print(degree[i], end = " "
       
# Driver code 
if __name__ == "__main__":
   
    a = [4, 1, 3, 4
    n = len(a) 
    printDegree(a, n) 
  
# This code is contributed by Rituraj Jain

chevron_right


C#

// C# implementation of the approach
using System;

class GFG
{

// Function to print the degrees of every
// node in the tree made by
// the given Prufer sequence
static void printDegree(int []prufer, int n)
{
int node = n + 2;

// Hash-table to mark the
// degree of every node
int[] degree = new int[n + 2 + 1];

// Initially let all the degrees be 1
for (int i = 1; i <= node; i++) { degree[i] = 1; } // Increase the count of the degree for (int i = 0; i < n; i++) { degree[prufer[i]]++; } // Print the degree of every node for (int i = 1; i <= node; i++) { Console.Write(degree[i] + " "); } } // Driver code public static void Main(String[] args) { int []a = {4, 1, 3, 4}; int n = a.Length; printDegree(a, n); } } // This code is contributed by 29AjayKumar [tabbyending]

Output:

2 1 2 3 1 1


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.