Print all the permutation of length L using the elements of an array | Iterative

Given an array of unique elements, we have to find all the permutation of length L using the elements of the array. Repetition of elements is allowed.

Examples:

Input: arr = { 1, 2 }, L=3
Output:
111
211
121
221
112
212
122
222



Input: arr = { 1, 2, 3 }, L=2
Output:
11
21
31
12
22
32
13
23
33

Approach:

  • To form a sequence of length L with N number of elements, it is known that the i-th element of the sequence can be filled in N ways. So there will be N^{L} sequences
  • We will run a loop from 0 to (N^{L} - 1), for every i we will convert i from base 10 to base N. The digits of the converted number will represent the indices of the array
  • We can print all the N^{L} sequences by this way.

Below is the implementation of the approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation
#include <bits/stdc++.h>
using namespace std;
  
// Convert the number to Lth
// base and print the sequence
void convert_To_Len_th_base(int n,
                            int arr[],
                            int len,
                            int L)
{
    // Sequence is of length L
    for (int i = 0; i < L; i++) {
        // Print the ith element
        // of sequence
        cout << arr[n % len];
        n /= len;
    }
    cout << endl;
}
  
// Print all the permuataions
void print(int arr[],
           int len,
           int L)
{
    // There can be (len)^l
    // permutations
    for (int i = 0; i < (int)pow(len, L); i++) {
        // Convert i to len th base
        convert_To_Len_th_base(i, arr, len, L);
    }
}
  
// Driver code
int main()
{
    int arr[] = { 1, 2, 3 };
    int len = sizeof(arr) / sizeof(arr[0]);
    int L = 2;
  
    // function call
    print(arr, len, L);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation for above approach
import java.io.*;
  
class GFG 
{
      
// Convert the number to Lth
// base and print the sequence
static void convert_To_Len_th_base(int n, int arr[], 
                                   int len, int L)
{
    // Sequence is of length L
    for (int i = 0; i < L; i++) 
    {
        // Print the ith element
        // of sequence
        System.out.print(arr[n % len]);
        n /= len;
    }
    System.out.println();
}
  
// Print all the permuataions
static void print(int arr[], int len, int L)
{
    // There can be (len)^l
    // permutations
    for (int i = 0
             i < (int)Math.pow(len, L); i++) 
    {
        // Convert i to len th base
        convert_To_Len_th_base(i, arr, len, L);
    }
}
  
// Driver code
public static void main (String[] args) 
{
    int arr[] = { 1, 2, 3 };
    int len = arr.length;
    int L = 2;
      
    // function call
    print(arr, len, L);
}
}
  
// This code is contributed by ajit. 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation for the above approach
  
# Convert the number to Lth
# base and print the sequence
def convert_To_Len_th_base(n, arr, Len, L):
      
    # Sequence is of Length L
    for i in range(L):
          
        # Print the ith element
        # of sequence
        print(arr[n % Len], end = "")
        n //= Len
    print()
  
# Print all the permuataions
def printf(arr, Len, L):
      
    # There can be (Len)^l permutations
    for i in range(pow(Len, L)):
          
        # Convert i to Len th base
        convert_To_Len_th_base(i, arr, Len, L)
  
# Driver code
arr = [1, 2, 3]
Len = len(arr)
L = 2
  
# function call
printf(arr, Len, L)
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation for above approach
using System;
  
class GFG 
{
      
// Convert the number to Lth
// base and print the sequence
static void convert_To_Len_th_base(int n, int []arr, 
                                   int len, int L)
{
    // Sequence is of length L
    for (int i = 0; i < L; i++) 
    {
        // Print the ith element
        // of sequence
        Console.Write(arr[n % len]);
        n /= len;
    }
    Console.WriteLine();
}
  
// Print all the permuataions
static void print(int []arr, int len, int L)
{
    // There can be (len)^l
    // permutations
    for (int i = 0; 
            i < (int)Math.Pow(len, L); i++) 
    {
        // Convert i to len th base
        convert_To_Len_th_base(i, arr, len, L);
    }
}
  
// Driver code
public static void Main (String[] args) 
{
    int []arr = { 1, 2, 3 };
    int len = arr.Length;
    int L = 2;
      
    // function call
    print(arr, len, L);
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

11
21
31
12
22
32
13
23
33


My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.