Related Articles

# Print all leaf nodes of an n-ary tree using DFS

• Difficulty Level : Basic
• Last Updated : 04 Jun, 2021

Given an array edge[] where (edge[i], edge[i]) defines an edge in the n-ary tree, the task is to print all the leaf nodes of the given tree using.

Examples:

```Input: edge[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 6}}
Output: 4 5 6
1
/ \
2   3
/ \   \
4   5   6

Input: edge[][] = {{1, 5}, {1, 7}, {5, 6}}
Output: 6 7```

Approach: DFS can be used to traverse the complete tree. We will keep track of parent while traversing to avoid the visited node array. Initially for every node we can set a flag and if the node have at least one child (i.e. non-leaf node) then we will reset the flag. The nodes with no children are the leaf nodes.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to perform DFS on the tree``void` `dfs(list<``int``> t[], ``int` `node, ``int` `parent)``{``    ``int` `flag = 1;` `    ``// Iterating the children of current node``    ``for` `(``auto` `ir : t[node]) {` `        ``// There is at least a child``        ``// of the current node``        ``if` `(ir != parent) {``            ``flag = 0;``            ``dfs(t, ir, node);``        ``}``    ``}` `    ``// Current node is connected to only``    ``// its parent i.e. it is a leaf node``    ``if` `(flag == 1)``        ``cout << node << ``" "``;``}` `// Driver code``int` `main()``{``    ``// Adjacency list``    ``list<``int``> t;` `    ``// List of all edges``    ``pair<``int``, ``int``> edges[] = { { 1, 2 },``                               ``{ 1, 3 },``                               ``{ 2, 4 },``                               ``{ 3, 5 },``                               ``{ 3, 6 },``                               ``{ 3, 7 },``                               ``{ 6, 8 } };` `    ``// Count of edges``    ``int` `cnt = ``sizeof``(edges) / ``sizeof``(edges);` `    ``// Number of nodes``    ``int` `node = cnt + 1;` `    ``// Create the tree``    ``for` `(``int` `i = 0; i < cnt; i++) {``        ``t[edges[i].first].push_back(edges[i].second);``        ``t[edges[i].second].push_back(edges[i].first);``    ``}` `    ``// Function call``    ``dfs(t, 1, 0);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ` `// Pair class``static` `class` `pair``{``    ``int` `first,second;``    ``pair(``int` `a, ``int` `b)``    ``{``        ``first = a;``        ``second = b;``    ``}``}` `// Function to perform DFS on the tree``static` `void` `dfs(Vector t, ``int` `node, ``int` `parent)``{``    ``int` `flag = ``1``;``    ` `    ``// Iterating the children of current node``    ``for` `(``int` `i = ``0``; i < ((Vector)t.get(node)).size(); i++)``    ``{``        ``int` `ir = (``int``)((Vector)t.get(node)).get(i);``        ` `        ``// There is at least a child``        ``// of the current node``        ``if` `(ir != parent)``        ``{``            ``flag = ``0``;``            ``dfs(t, ir, node);``        ``}``    ``}` `    ``// Current node is connected to only``    ``// its parent i.e. it is a leaf node``    ``if` `(flag == ``1``)``        ``System.out.print( node + ``" "``);``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``// Adjacency list``    ``Vector t = ``new` `Vector();` `    ``// List of all edges``    ``pair edges[] = { ``new` `pair( ``1``, ``2` `),``                    ``new` `pair( ``1``, ``3` `),``                    ``new` `pair( ``2``, ``4` `),``                    ``new` `pair( ``3``, ``5` `),``                    ``new` `pair( ``3``, ``6` `),``                    ``new` `pair( ``3``, ``7` `),``                    ``new` `pair( ``6``, ``8` `) };` `    ``// Count of edges``    ``int` `cnt = edges.length;` `    ``// Number of nodes``    ``int` `node = cnt + ``1``;``    ` `    ``for``(``int` `i = ``0``; i < ``1005``; i++)``    ``{``        ``t.add(``new` `Vector());``    ``}` `    ``// Create the tree``    ``for` `(``int` `i = ``0``; i < cnt; i++)``    ``{``        ``((Vector)t.get(edges[i].first)).add(edges[i].second);``        ``((Vector)t.get(edges[i].second)).add(edges[i].first);``    ``}` `    ``// Function call``    ``dfs(t, ``1``, ``0``);``}``}` `// This code is contributed by Arnab Kundu`

## Python3

 `# Python3 implementation of the approach``t ``=` `[[] ``for` `i ``in` `range``(``1005``)]` `# Function to perform DFS on the tree``def` `dfs(node, parent):``    ``flag ``=` `1` `    ``# Iterating the children of current node``    ``for` `ir ``in` `t[node]:` `        ``# There is at least a child``        ``# of the current node``        ``if` `(ir !``=` `parent):``            ``flag ``=` `0``            ``dfs(ir, node)` `    ``# Current node is connected to only``    ``# its parent i.e. it is a leaf node``    ``if` `(flag ``=``=` `1``):``        ``print``(node, end ``=` `" "``)` `# Driver code` `# List of all edges``edges ``=` `[[ ``1``, ``2` `],``         ``[ ``1``, ``3` `],``         ``[ ``2``, ``4` `],``         ``[ ``3``, ``5` `],``         ``[ ``3``, ``6` `],``         ``[ ``3``, ``7` `],``         ``[ ``6``, ``8` `]]` `# Count of edges``cnt ``=` `len``(edges)` `# Number of nodes``node ``=` `cnt ``+` `1` `# Create the tree``for` `i ``in` `range``(cnt):``    ``t[edges[i][``0``]].append(edges[i][``1``])``    ``t[edges[i][``1``]].append(edges[i][``0``])` `# Function call``dfs(``1``, ``0``)` `# This code is contributed by Mohit Kumar`

## C#

 `// C# implementation of the approach``using` `System.Collections;``using` `System.Collections.Generic;``using` `System;` `class` `GFG{``    ` `// Pair class``class` `pair``{``    ``public` `int` `first, second;``    ``public` `pair(``int` `a, ``int` `b)``    ``{``        ``first = a;``        ``second = b;``    ``}``}` `// Function to perform DFS on the tree``static` `void` `dfs(ArrayList t, ``int` `node,``                             ``int` `parent)``{``    ``int` `flag = 1;``    ` `    ``// Iterating the children of current node``    ``for``(``int` `i = 0;``            ``i < ((ArrayList)t[node]).Count;``            ``i++)``    ``{``        ``int` `ir = (``int``)((ArrayList)t[node])[i];``        ` `        ``// There is at least a child``        ``// of the current node``        ``if` `(ir != parent)``        ``{``            ``flag = 0;``            ``dfs(t, ir, node);``        ``}``    ``}` `    ``// Current node is connected to only``    ``// its parent i.e. it is a leaf node``    ``if` `(flag == 1)``        ``Console.Write( node + ``" "``);``}` `// Driver code``public` `static` `void` `Main(``string` `[]args)``{``    ` `    ``// Adjacency list``    ``ArrayList t = ``new` `ArrayList();` `    ``// List of all edges``    ``pair []edges = { ``new` `pair(1, 2),``                     ``new` `pair(1, 3),``                     ``new` `pair(2, 4),``                     ``new` `pair(3, 5),``                     ``new` `pair(3, 6),``                     ``new` `pair(3, 7),``                     ``new` `pair(6, 8) };` `    ``// Count of edges``    ``int` `cnt = edges.Length;``    ` `    ``for``(``int` `i = 0; i < 1005; i++)``    ``{``        ``t.Add(``new` `ArrayList());``    ``}` `    ``// Create the tree``    ``for``(``int` `i = 0; i < cnt; i++)``    ``{``        ``((ArrayList)t[edges[i].first]).Add(``            ``edges[i].second);``        ``((ArrayList)t[edges[i].second]).Add(``            ``edges[i].first);``    ``}` `    ``// Function call``    ``dfs(t, 1, 0);``}``}` `// This code is contributed by rutvik_56`

## Javascript

 ``
Output:
`4 5 8 7`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up