Level with maximum number of nodes using DFS in a N-ary tree

Given a N-ary tree, the task is to print the level with the maximum number of nodes.

Examples:

Input : For example, consider the following tree
          1               - Level 1
       /     \
      2       3           - Level 2
    /   \       \
   4     5       6        - Level 3
        /  \     /
       7    8   9         - Level 4


Output : Level-3 and Level-4

Approach:



  • Insert all the connecting nodes to a 2-D vector tree.
  • Run a DFS on the tree such that height[node] = 1 + height[parent]
  • Once DFS traversal is completed, increase the count[] array by 1, for every node’s level.
  • Iterate from first level to last level, and find the level with the maximum number of nodes.
  • Re-traverse from first to last level, and print all the levels which have the same number of maximum nodes.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print the level
// with maximum number of nodes
  
#include <bits/stdc++.h>
using namespace std;
  
// Function for DFS in a tree
void dfs(int node, int parent, int height[], int vis[],
         vector<int> tree[])
{
    // calculate the level of every node
    height[node] = 1 + height[parent];
  
    // mark every node as visited
    vis[node] = 1;
  
    // iterate in the subtree
    for (auto it : tree[node]) {
  
        // if the node is not visited
        if (!vis[it]) {
  
            // call the dfs function
            dfs(it, node, height, vis, tree);
        }
    }
}
  
// Function to insert edges
void insertEdges(int x, int y, vector<int> tree[])
{
    tree[x].push_back(y);
    tree[y].push_back(x);
}
  
// Function to print all levels
void printLevelswithMaximumNodes(int N, int vis[], int height[])
{
    int mark[N + 1];
    memset(mark, 0, sizeof mark);
  
    int maxLevel = 0;
    for (int i = 1; i <= N; i++) {
  
        // count number of nodes
        // in every level
        if (vis[i])
            mark[height[i]]++;
  
        // find the maximum height of tree
        maxLevel = max(height[i], maxLevel);
    }
  
    int maxi = 0;
  
    for (int i = 1; i <= maxLevel; i++) {
        maxi = max(mark[i], maxi);
    }
  
    // print even number of nodes
    cout << "The levels with maximum number of nodes are: ";
    for (int i = 1; i <= maxLevel; i++) {
        if (mark[i] == maxi)
            cout << i << " ";
    }
}
  
// Driver Code
int main()
{
    // Construct the tree
  
    /* 1 
     /  \ 
    2    3 
    / \   \ 
   4   5   6 
      / \  / 
     7   8 9  */
  
    const int N = 9;
  
    vector<int> tree[N + 1];
  
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
  
    int height[N + 1];
    int vis[N + 1] = { 0 };
  
    height[0] = 0;
  
    // call the dfs function
    dfs(1, 0, height, vis, tree);
  
    // Function to print
    printLevelswithMaximumNodes(N, vis, height);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to print the level 
# with the maximum number of nodes 
  
# Function for DFS in a tree 
def dfs(node, parent, height, vis, tree): 
  
    # calculate the level of every node 
    height[node] = 1 + height[parent] 
  
    # mark every node as visited 
    vis[node] = 1
  
    # iterate in the subtree 
    for it in tree[node]: 
  
        # if the node is not visited 
        if vis[it] == 0
  
            # call the dfs function 
            dfs(it, node, height, vis, tree) 
          
# Function to insert edges 
def insertEdges(x, y, tree): 
  
    tree[x].append(y) 
    tree[y].append(x) 
  
# Function to print all levels 
def printLevelswithMaximumNodes(N, vis, height): 
  
    mark = [0] * (N + 1
  
    maxLevel = 0
    for i in range (1, N + 1): 
  
        # count number of nodes 
        # in every level 
        if vis[i] == 1
            mark[height[i]] += 1
  
        # find the maximum height of tree 
        maxLevel = max(height[i], maxLevel) 
      
    maxi = 0
  
    for i in range(1, maxLevel + 1): 
        maxi = max(mark[i], maxi) 
      
    # print even number of nodes 
    print("The levels with maximum number"
                "of nodes are:", end = " "
    for i in range(1, maxLevel + 1): 
        if mark[i] == maxi: 
            print(i, end = " "
  
# Driver Code
if __name__ == "__main__":
      
    # Construct the tree 
    N = 9
  
    # Create an empty 2-D list
    tree = [[] for i in range(N + 1)]
  
    insertEdges(1, 2, tree) 
    insertEdges(1, 3, tree) 
    insertEdges(2, 4, tree) 
    insertEdges(2, 5, tree) 
    insertEdges(5, 7, tree) 
    insertEdges(5, 8, tree) 
    insertEdges(3, 6, tree) 
    insertEdges(6, 9, tree) 
  
    height = [None] * (N + 1
    vis = [0] * (N + 1
  
    height[0] = 0
  
    # call the dfs function 
    dfs(1, 0, height, vis, tree) 
  
    # Function to print 
    printLevelswithMaximumNodes(N, vis, height) 
      
# This code is contributed 
# by Rituraj Jain

chevron_right


Output:

The levels with maximum number of nodes are: 3 4

Time Complexity: O(N)
Auxiliary Space: O(N)



My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.