# Prime Subset Product Problem

Given an array arr[] of N integers. Value of a subset of array A is defined as the product of all prime numbers in that subset. If there are no primes in the subset then the value of that subset is 1. The task is to calculate the product of values of all possible non-empty subsets of the given array modulus 100000007.

Examples:

Input: arr[] = {3, 7}
Output: 441
val({3}) = 3
val({7}) = 7
val({3, 7}) = 3 * 7 = 21
3 * 7 * 21 = 441

Input: arr[] = {1, 1, 1}
Output: 1

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Since it is known that a number occurs 2N – 1 times in all the subset of the given array of size N. So, if a number X is prime then the contibution of X will be X * X * X * ….. * 2N – 1 times i.e.

Since 2N – 1 will also be a large number, it cannot be calculated directly. Fermat’s Theorem will be used to calculate the power here.

After that, the value of each element can be calculated easily.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `int` `power(``int` `a, ``int` `b, ``int` `mod) ` `{ ` `    ``int` `aa = 1; ` `    ``while``(b) ` `    ``{ ` `        ``if``(b & 1) ` `        ``{  ` `            ``aa = aa * a; ` `            ``aa %= mod; ` `        ``} ` `        ``a = a * a; ` `        ``a %= mod; ` `        ``b /= 2; ` `    ``} ` `    ``return` `aa; ` `} ` ` `  `// Function to return the prime subset  ` `// product of the given array ` `int` `product(``int` `A[], ``int` `n) ` `{ ` ` `  `    ``// Create Sieve to check whether a ` `    ``// number is prime or not ` `    ``int` `N = 100010; ` `    ``int` `mod = 1000000007; ` `    ``vector<``int``> prime(N, 1); ` `    ``prime = prime = 0; ` `    ``int` `i = 2; ` `    ``while` `(i * i < N) ` `    ``{ ` `        ``if` `(prime[i]) ` `            ``for` `(``int` `j = 2 * i; ` `                     ``j <= N;j += i) ` `                ``prime[j] = 0; ` ` `  `        ``i += 1; ` `    ``} ` ` `  `    ``// Length of the array ` `    ``// Calculating 2^(n-1) % mod ` `    ``int` `t = power(2, n - 1, mod - 1); ` ` `  `    ``int` `ans = 1; ` ` `  `    ``for` `(``int` `j = 0; j < n; j++) ` `    ``{ ` `        ``int` `i = A[j]; ` ` `  `        ``// If element is prime then add ` `        ``// its contribution in the result ` `        ``if``( prime[i]) ` `        ``{ ` `            ``ans *= power(i, t, mod); ` `            ``ans %= mod; ` `        ``} ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A[] = {3, 7}; ` `     `  `    ``int` `n = ``sizeof``(A) / ``sizeof``(A); ` `     `  `    ``printf``(``"%d"``, product(A, n)); ` `} ` ` `  `// This code is contributed by Mohit Kumar  `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` `static` `int` `power(``int` `a, ``int` `b, ``int` `mod) ` `{ ` `    ``int` `aa = ``1``; ` `    ``while``(b > ``0``) ` `    ``{ ` `        ``if``(b % ``2` `== ``1``) ` `        ``{  ` `            ``aa = aa * a; ` `            ``aa %= mod; ` `        ``} ` `        ``a = a * a; ` `        ``a %= mod; ` `        ``b /= ``2``; ` `    ``} ` `    ``return` `aa; ` `} ` ` `  `// Function to return the prime subset  ` `// product of the given array ` `static` `int` `product(``int` `A[], ``int` `n) ` `{ ` ` `  `    ``// Create Sieve to check whether a ` `    ``// number is prime or not ` `    ``int` `N = ``100010``; ` `    ``int` `mod = ``1000000007``; ` `    ``int` `[]prime = ``new` `int``[N]; ` `    ``for` `(``int` `j = ``0``; j < N; j++) ` `    ``{ ` `        ``prime[j] = ``1``; ` `    ``} ` `     `  `    ``prime[``0``] = prime[``1``] = ``0``; ` `    ``int` `i = ``2``; ` `    ``while` `(i * i < N) ` `    ``{ ` `        ``if` `(prime[i] == ``1``) ` `            ``for` `(``int` `j = ``2` `* i; ` `                    ``j < N;j += i) ` `                ``prime[j] = ``0``; ` ` `  `        ``i += ``1``; ` `    ``} ` ` `  `    ``// Length of the array ` `    ``// Calculating 2^(n-1) % mod ` `    ``int` `t = power(``2``, n - ``1``, mod - ``1``); ` ` `  `    ``int` `ans = ``1``; ` ` `  `    ``for` `(``int` `j = ``0``; j < n; j++) ` `    ``{ ` `        ``i = A[j]; ` ` `  `        ``// If element is prime then add ` `        ``// its contribution in the result ` `        ``if``( prime[i] == ``1``) ` `        ``{ ` `            ``ans *= power(i, t, mod); ` `            ``ans %= mod; ` `        ``} ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `A[] = {``3``, ``7``}; ` `     `  `    ``int` `n = A.length; ` `     `  `    ``System.out.printf(``"%d"``, product(A, n)); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function to return the prime subset  ` `# product of the given array ` `def` `product(A): ` `     `  `    ``# Create Sieve to check whether a  ` `    ``# number is prime or not ` `    ``N ``=` `100010` `    ``mod ``=` `1000000007` `    ``prime ``=` `[``1``] ``*` `N ` `    ``prime[``0``] ``=` `prime[``1``] ``=` `0` `    ``i ``=` `2` `    ``while` `i ``*` `i < N: ` `        ``if` `prime[i]: ` `            ``for` `j ``in` `range``(i ``*` `i, N, i): ` `                ``prime[j] ``=` `0` `         `  `        ``i ``+``=` `1` `     `  `    ``# Length of the array ` `    ``n ``=` `len``(A) ` `     `  `    ``# Calculating 2^(n-1) % mod ` `    ``t ``=` `pow``(``2``, n``-``1``, mod``-``1``) ` `     `  `    ``ans ``=` `1` `     `  `    ``for` `i ``in` `A: ` `         `  `        ``# If element is prime then add ` `        ``# its contribution in the result ` `        ``if` `prime[i]: ` `            ``ans ``*``=` `pow``(i, t, mod) ` `            ``ans ``%``=` `mod ` `             `  `    ``return` `ans ` `     `  `# Driver code ` `A ``=` `[``3``, ``7``] ` `print``(product(A)) `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `static` `int` `power(``int` `a, ``int` `b, ``int` `mod) ` `{ ` `    ``int` `aa = 1; ` `    ``while``(b > 0) ` `    ``{ ` `        ``if``(b % 2 == 1) ` `        ``{  ` `            ``aa = aa * a; ` `            ``aa %= mod; ` `        ``} ` `        ``a = a * a; ` `        ``a %= mod; ` `        ``b /= 2; ` `    ``} ` `    ``return` `aa; ` `} ` ` `  `// Function to return the prime subset  ` `// product of the given array ` `static` `int` `product(``int` `[]A, ``int` `n) ` `{ ` ` `  `    ``// Create Sieve to check whether a ` `    ``// number is prime or not ` `    ``int` `N = 100010; ` `    ``int` `mod = 1000000007; ` `    ``int` `[]prime = ``new` `int``[N]; ` `    ``for` `(``int` `j = 0; j < N; j++) ` `    ``{ ` `        ``prime[j] = 1; ` `    ``} ` `     `  `    ``prime = prime = 0; ` `    ``int` `i = 2; ` `    ``while` `(i * i < N) ` `    ``{ ` `        ``if` `(prime[i] == 1) ` `            ``for` `(``int` `j = 2 * i; ` `                     ``j < N; j += i) ` `                ``prime[j] = 0; ` ` `  `        ``i += 1; ` `    ``} ` ` `  `    ``// Length of the array ` `    ``// Calculating 2^(n-1) % mod ` `    ``int` `t = power(2, n - 1, mod - 1); ` ` `  `    ``int` `ans = 1; ` ` `  `    ``for` `(``int` `j = 0; j < n; j++) ` `    ``{ ` `        ``i = A[j]; ` ` `  `        ``// If element is prime then add ` `        ``// its contribution in the result ` `        ``if``( prime[i] == 1) ` `        ``{ ` `            ``ans *= power(i, t, mod); ` `            ``ans %= mod; ` `        ``} ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]A = {3, 7}; ` `     `  `    ``int` `n = A.Length; ` `     `  `    ``Console.Write(``"{0}"``, product(A, n)); ` `} ` `} ` `     `  `// This code is contributed by Rajput-Ji `

Output:

```441
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : mohit kumar 29, Rajput-Ji

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.