Largest possible Subset from an Array such that no element is K times any other element in the Subset

Given an array arr[] consisting of N distinct integers and an integer K, the task is to find the maximum size of a subset possible such that no element in the subset is K times any other element of the subset(i.e. no such pair {n, m} should be present in the subset such that either m = n * K or n = m * K).

Examples: 

Input: arr[] = {2, 8, 6, 5, 3}, K = 2 
Output:
Explanation: 
Only possible pair existing in the array with an element being K( = 2) times the other is {6, 3}. 
Hence, all possible subsets which does not contain both the elements of the pair {6, 3} together can be considered. 
Therefore, the longest possible subset can be of length 4.

Input: arr[] = {1, 4, 3, 2}, K = 3 
output:
 

Approach: 
Follow the steps below to solve the problem: 



  • Find the number of pairs possible such that one element is K times the other from the given array
  • Sort the array in increasing order of elements.
  • Traverse the array and store the frequenciindices of array elements in Map.
  • Initialize an array visited to mark for every index, whether that element is included(0) or not(1) in the subset.
  • Traverse the array again and for every index having vis[i] = 0, check if arr[i] * K is present in the Map or not. If found, then increase the count of pairs and set vis[mp[arr[i] * K]] = 1.
  • Finally, print N – count of pairs as the answer. 

Below is implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of
// the above aproach
#include <bits/stdc++.h>
#define ll long long
using namespace std;
  
// Function to find the maximum
// size of the required subset
int findMaxLen(vector<ll>& a, ll k)
{
  
    // Size of the array
    int n = a.size();
  
    // Sort the array
    sort(a.begin(), a.end());
  
    // Stores which index is
    // included or excluded
    vector<bool> vis(n, 0);
  
    // Stores the indices of
    // array elements
    map<int, int> mp;
  
    for (int i = 0; i < n; i++) {
        mp[a[i]] = i;
    }
  
    // Count of pairs
    int c = 0;
  
    // Iterate through all
    // the element
    for (int i = 0; i < n; ++i) {
  
        // If element is included
        if (vis[i] == false) {
            int check = a[i] * k;
  
            // Check if a[i] * k is present
            // in the array or not
            if (mp.find(check) != mp.end()) {
  
                // Increase count of pair
                c++;
  
                // Exclude the pair
                vis[mp[check]] = true;
            }
        }
    }
  
    return n - c;
}
  
// Driver code
int main()
{
  
    int K = 3;
    vector<ll> arr = { 1, 4, 3, 2 };
  
    cout << findMaxLen(arr, K);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of
// the above aproach
import java.util.*;
  
class GFG{
  
// Function to find the maximum
// size of the required subset
static int findMaxLen(int[] a, int k)
{
  
    // Size of the array
    int n = a.length;
  
    // Sort the array
    Arrays.sort(a);
  
    // Stores which index is
    // included or excluded
    boolean []vis = new boolean[n];
  
    // Stores the indices of
    // array elements
    HashMap<Integer,
            Integer> mp = new HashMap<Integer,
                                      Integer>();
                                        
    for(int i = 0; i < n; i++)
    {
        mp.put(a[i], i);
    }
  
    // Count of pairs
    int c = 0;
  
    // Iterate through all
    // the element
    for(int i = 0; i < n; ++i)
    {
  
        // If element is included
        if (vis[i] == false
        {
            int check = a[i] * k;
  
            // Check if a[i] * k is present
            // in the array or not
            if (mp.containsKey(check))
            {
  
                // Increase count of pair
                c++;
  
                // Exclude the pair
                vis[mp.get(check)] = true;
            }
        }
    }
    return n - c;
}
  
// Driver code
public static void main(String[] args)
{
    int K = 3;
    int []arr = { 1, 4, 3, 2 };
  
    System.out.print(findMaxLen(arr, K));
}
}
  
// This code is contributed by amal kumar choubey 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
  
# Function to find the maximum
# size of the required subset
def findMaxLen(a, k):
  
    # Size of the array
    n = len(a)
  
    # Sort the array
    a.sort()
  
    # Stores which index is
    # included or excluded
    vis = [0] * n
  
    # Stores the indices of
    # array elements
    mp = {}
  
    for i in range(n):
        mp[a[i]] = i
  
    # Count of pairs
    c = 0
  
    # Iterate through all
    # the element
    for i in range(n):
  
        # If element is included
        if(vis[i] == False):
            check = a[i] * k
  
            # Check if a[i] * k is present
            # in the array or not
            if(check in mp.keys()):
  
                # Increase count of pair
                c += 1
  
                # Exclude the pair 
                vis[mp[check]] = True
  
    return n - c
  
# Driver Code
if __name__ == '__main__':
  
    K = 3
    arr = [ 1, 4, 3, 2 ]
  
    print(findMaxLen(arr, K))
  
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above aproach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function to find the maximum
// size of the required subset
static int findMaxLen(int[] a, int k)
{
  
    // Size of the array
    int n = a.Length;
  
    // Sort the array
    Array.Sort(a);
  
    // Stores which index is
    // included or excluded
    bool []vis = new bool[n];
  
    // Stores the indices of
    // array elements
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
                                      
    for(int i = 0; i < n; i++)
    {
        mp.Add(a[i], i);
    }
  
    // Count of pairs
    int c = 0;
  
    // Iterate through all
    // the element
    for(int i = 0; i < n; ++i)
    {
  
        // If element is included
        if (vis[i] == false
        {
            int check = a[i] * k;
  
            // Check if a[i] * k is present
            // in the array or not
            if (mp.ContainsKey(check))
            {
  
                // Increase count of pair
                c++;
  
                // Exclude the pair
                vis[mp[check]] = true;
            }
        }
    }
    return n - c;
}
  
// Driver code
public static void Main(String[] args)
{
    int K = 3;
    int []arr = { 1, 4, 3, 2 };
  
    Console.Write(findMaxLen(arr, K));
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output: 

3

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.