Pollard p-1 Algorithm
Factorizing a large odd integer, n, into its corresponding prime factors can prove to be a difficult task. A brute approach can be testing all integers less than n until a divisor is found. This proves to be very time consuming as a divisor might be a very large prime itself. Pollard p-1 algorithm is a better approach to find out prime factors of any integer. Using the combined help of Modular Exponentiation and GCD, it is able to calculate all the distinct prime factors in no time.
Algorithm
- Given a number n. Initialize a = 2, i = 2
- Until a factor is returned do a <- (a^i) mod n d <- GCD(a-1, n) if 1 < d < n then return d else i <- i+1
- Other factor, d’ <- n/d
- If d’ is not prime n <- d’ goto 1 else d and d’ are two prime factors.
In the above algorithm, the power of ‘a’ is continuously raised until a factor, ‘d’, of n is obtained. Once d is obtained, another factor, ‘d”, is n/d. If d’ is not prime, the same task is repeated for d’ Examples:
Input : 1403 Output : Prime factors of 1403 are 61 23. Explanation : n = 1403, a = 2, i = 2 1st Iteration: a = (2^2) mod 1403 = 4 d = GCD(3, 1403) = 1 i = 2 + 1 = 3 2nd Iteration: a = (4^3) mod 1403 = 64 d = GCD(63, 1403) = 1 i = 3 + 1 = 4 3rd Iteration: a = (64^4) mod 1403 = 142 d = GCD(141, 1403) = 1 i = 4 + 1 = 5 4th Iteration: a = (142^5) mod 1403 = 794 d = GCD(793, 1403) = 61 Since 1 < d < n, one factor is 61. d' = 1403 / 61 = 23. Input : 2993 Output : Prime factors of 2993 are 41 73.
Below is the implementation.
C++
// C++ code for Pollard p-1 // factorization Method #include <bits/stdc++.h> using namespace std; // function for // calculating GCD int gcd( int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // function for // checking prime bool isPrime( int n) { if (n <= 1) return false ; if (n == 2 || n == 3) return true ; if (n % 2 == 0) return false ; for ( int i = 3; i * i <= n; i += 2) if (n % i == 0) return false ; return true ; } // function to generate // prime factors int pollard( int n) { // defining base long long a = 2; // defining exponent int i = 2; // iterate till a prime factor is obtained while ( true ) { // recomputing a as required a = (( long long ) pow (a, i)) % n; a += n; a %= n; // finding gcd of a-1 and n // using math function int d = gcd(a-1,n); // check if factor obtained if (d > 1) { //return the factor return d; break ; } // else increase exponent by one // for next round i += 1; } } // Driver code int main() { int n = 1403; // temporarily storing n int num = n; // list for storing prime factors vector< int > ans; // iterated till all prime factors // are obtained while ( true ) { // function call int d = pollard(num); // add obtained factor to list ans.push_back(d); // reduce n int r = (num/d); // check for prime if (isPrime(r)) { // both prime factors obtained ans.push_back(r); break ; } // reduced n is not prime, so repeat else num = r; } // print the result cout << "Prime factors of " << n << " are " ; for ( int elem : ans) cout << elem << " " ; } // This code is contributed by phasing17 |
Java
// Java code for Pollard p-1 // factorization Method import java.util.*; class GFG { // function for // calculating GCD static long gcd( long a, long b) { if (a == 0 ) return b; return gcd(b % a, a); } // function for // checking prime static boolean isPrime( long n) { if (n <= 1 ) return false ; if (n == 2 || n == 3 ) return true ; if (n % 2 == 0 ) return false ; for ( long i = 3 ; i * i <= n; i += 2 ) if (n % i == 0 ) return false ; return true ; } // function to generate // prime factors static long pollard( long n) { // defining base long a = 2 ; // defining exponent long i = 2 ; // iterate till a prime factor is obtained while ( true ) { // recomputing a as required a = (( long ) Math.pow(a, i)) % n; a += n; a %= n; // finding gcd of a-1 and n // using math function long d = gcd(a- 1 ,n); // check if factor obtained if (d > 1 ) { //return the factor return d; } // else increase exponent by one // for next round i += 1 ; } } // Driver code public static void main(String[] args) { long n = 1403 ; // temporarily storing n long num = n; // list for storing prime factors ArrayList<Long> ans = new ArrayList<Long>(); // iterated till all prime factors // are obtained while ( true ) { // function call long d = pollard(num); // add obtained factor to list ans.add(d); // reduce n long r = (num/d); // check for prime if (isPrime(r)) { // both prime factors obtained ans.add(r); break ; } // reduced n is not prime, so repeat else num = r; } // prlong the result System.out.print( "Prime factors of " + n + " are " ); for ( long elem : ans) System.out.print(elem + " " ); } } // This code is contributed by phasing17 |
Python3
# Python code for Pollard p-1 # factorization Method # importing "math" for # calculating GCD import math # importing "sympy" for # checking prime import sympy # function to generate # prime factors def pollard(n): # defining base a = 2 # defining exponent i = 2 # iterate till a prime factor is obtained while ( True ): # recomputing a as required a = (a * * i) % n # finding gcd of a-1 and n # using math function d = math.gcd((a - 1 ), n) # check if factor obtained if (d > 1 ): #return the factor return d break # else increase exponent by one # for next round i + = 1 # Driver code n = 1403 # temporarily storing n num = n # list for storing prime factors ans = [] # iterated till all prime factors # are obtained while ( True ): # function call d = pollard(num) # add obtained factor to list ans.append(d) # reduce n r = int (num / d) # check for prime using sympy if (sympy.isprime(r)): # both prime factors obtained ans.append(r) break # reduced n is not prime, so repeat else : num = r # print the result print ( "Prime factors of" , n, "are" , * ans) |
C#
// C# code for Pollard p-1 // factorization Method using System; using System.Collections.Generic; class GFG { // function for // calculating GCD static long gcd( long a, long b) { if (a == 0) return b; return gcd(b % a, a); } // function for // checking prime static bool isPrime( long n) { if (n <= 1) return false ; if (n == 2 || n == 3) return true ; if (n % 2 == 0) return false ; for ( long i = 3; i * i <= n; i += 2) if (n % i == 0) return false ; return true ; } // function to generate // prime factors static long pollard( long n) { // defining base long a = 2; // defining exponent long i = 2; // iterate till a prime factor is obtained while ( true ) { // recomputing a as required a = (( long ) Math.Pow(a, i)) % n; a += n; a %= n; // finding gcd of a-1 and n // using math function long d = gcd(a-1,n); // check if factor obtained if (d > 1) { //return the factor return d; } // else increase exponent by one // for next round i += 1; } } // Driver code public static void Main( string [] args) { long n = 1403; // temporarily storing n long num = n; // list for storing prime factors List< long > ans = new List< long >(); // iterated till all prime factors // are obtained while ( true ) { // function call long d = pollard(num); // add obtained factor to list ans.Add(d); // reduce n long r = (num/d); // check for prime if (isPrime(r)) { // both prime factors obtained ans.Add(r); break ; } // reduced n is not prime, so repeat else num = r; } // prlong the result Console.Write( "Prime factors of " + n + " are " ); foreach ( long elem in ans) Console.Write(elem + " " ); } } // This code is contributed by phasing17 |
Javascript
// JavaScript code for Pollard p-1 // factorization Method // function for // calculating GCD function gcd(x, y) { x = Math.abs(x); y = Math.abs(y); while (y) { var t = y; y = x % y; x = t; } return x; } // function for // checking prime function isPrime(n) { if (n <= 1) return false ; if (n == 2 || n == 3) return true ; if (n % 2 == 0) return true ; for ( var i = 3; i * i <= n; i += 2) if (n % i == 0) return false ; return true ; } // function to generate // prime factors function pollard(n) { // defining base let a = 2 // defining exponent let i = 2 // iterate till a prime factor is obtained while ( true ) { // recomputing a as required a = (a**i) % n // finding gcd of a-1 and n // using math function d = gcd((a-1), n) // check if factor obtained if (d > 1) { //return the factor return d break } // else increase exponent by one // for next round i += 1 } } // Driver code let n = 1403 // temporarily storing n let num = n // list for storing prime factors let ans = [] // iterated till all prime factors // are obtained while ( true ) { // function call let d = pollard(num) // add obtained factor to list ans.push(d) // reduce n r = Math.floor(num/d) // check for prime if (isPrime(r)) { // both prime factors obtained ans.push(r) break } // reduced n is not prime, so repeat else num = r } // print the result console.log( "Prime factors of" , n, "are" , ans.join( " " )) // This code is contributed by phasing17 |
Output:
Prime factors of 1403 are 61 23
Please Login to comment...