# Permutation of an array that has smaller values from another array

Given two arrays A and B of equal size. The task is to print any permutation of array A such that the number of indices i for which A[i] > B[i] is maximized.

Examples:

```Input: A = [12, 24, 8, 32],
B = [13, 25, 32, 11]
Output: 24 32 8 12

Input: A = [2, 7, 11, 15],
B = [1, 10, 4, 11]
Output: 2 11 7 15
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

If the smallest element in A beats the smallest element in B, we should pair them. Otherwise, it is useless for our score, as it can’t beat any other element of B.

With above strategy we make two vector of pairs, Ap for A and Bp for B with their element and respective index. Then sort both vectors and simulate them. Whenever we found any element in vector Ap such that Ap[i].first > Bp[j].first for some (i, j) we pair them i:e we update our answer array to ans[Bp[j].second] = Ap[i].first. However if Ap[i].first < Bp[j].first for some (i, j) then we store them in vector remain and finally pair them with any one.

Below is the implementation of above approach:

## C++

 `// CPP program to find permutation of an array that ` `// has smaller values from another array ` `#include ` `using` `namespace` `std; ` ` `  `// Function to print required permutation ` `void` `anyPermutation(``int` `A[], ``int` `B[], ``int` `n) ` `{ ` `    ``// Storing elements and indexes ` `    ``vector > Ap, Bp; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``Ap.push_back(make_pair(A[i], i)); ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``Bp.push_back(make_pair(B[i], i)); ` ` `  `    ``sort(Ap.begin(), Ap.end()); ` `    ``sort(Bp.begin(), Bp.end()); ` ` `  `    ``int` `i = 0, j = 0, ans[n] = { 0 }; ` ` `  `    ``// Filling the answer array ` `    ``vector<``int``> remain; ` `    ``while` `(i < n && j < n) { ` ` `  `        ``// pair element of A and B ` `        ``if` `(Ap[i].first > Bp[j].first) { ` `            ``ans[Bp[j].second] = Ap[i].first; ` `            ``i++; ` `            ``j++; ` `        ``} ` `        ``else` `{ ` `            ``remain.push_back(i); ` `            ``i++; ` `        ``} ` `    ``} ` ` `  `    ``// Fill the remaining elements of answer ` `    ``j = 0; ` `    ``for` `(``int` `i = 0; i < n; ++i) ` `        ``if` `(ans[i] == 0) { ` `            ``ans[i] = Ap[remain[j]].first; ` `            ``j++; ` `        ``} ` ` `  `    ``// Output required permutation ` `    ``for` `(``int` `i = 0; i < n; ++i) ` `        ``cout << ans[i] << ``" "``; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``int` `A[] = { 12, 24, 8, 32 }; ` `    ``int` `B[] = { 13, 25, 32, 11 }; ` `    ``int` `n = ``sizeof``(A) / ``sizeof``(A); ` `    ``anyPermutation(A, B, n); ` `    ``return` `0; ` `} ` ` `  `// This code is written by Sanjit_Prasad `

## Python3

 `# Python3 program to find permutation of  ` `# an array that has smaller values from ` `# another array  ` ` `  `# Function to print required permutation  ` `def` `anyPermutation(A, B, n):  ` ` `  `    ``# Storing elements and indexes  ` `    ``Ap, Bp ``=` `[], [] ` `     `  `    ``for` `i ``in` `range``(``0``, n):  ` `        ``Ap.append([A[i], i])  ` `    ``for` `i ``in` `range``(``0``, n):  ` `        ``Bp.append([B[i], i])  ` `     `  `    ``Ap.sort() ` `    ``Bp.sort() ` `     `  `    ``i, j ``=` `0``, ``0``,  ` `    ``ans ``=` `[``0``] ``*` `n  ` ` `  `    ``# Filling the answer array  ` `    ``remain ``=` `[]  ` `    ``while` `i < n ``and` `j < n:  ` ` `  `        ``# pair element of A and B  ` `        ``if` `Ap[i][``0``] > Bp[j][``0``]:  ` `            ``ans[Bp[j][``1``]] ``=` `Ap[i][``0``]  ` `            ``i ``+``=` `1` `            ``j ``+``=` `1` `         `  `        ``else``: ` `            ``remain.append(i)  ` `            ``i ``+``=` `1` `         `  `    ``# Fill the remaining elements ` `    ``# of answer  ` `    ``j ``=` `0` `    ``for` `i ``in` `range``(``0``, n):  ` `        ``if` `ans[i] ``=``=` `0``: ` `            ``ans[i] ``=` `Ap[remain[j]][``0``]  ` `            ``j ``+``=` `1` `         `  `    ``# Output required permutation  ` `    ``for` `i ``in` `range``(``0``, n):  ` `        ``print``(ans[i], end ``=` `" "``)  ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``A ``=` `[ ``12``, ``24``, ``8``, ``32` `]  ` `    ``B ``=` `[ ``13``, ``25``, ``32``, ``11` `]  ` `    ``n ``=` `len``(A)  ` `    ``anyPermutation(A, B, n)  ` `     `  `# This code is contributed  ` `# by Rituraj Jain `

Output:

```24 32 8 12
```

Time Complexity: O(N*log(N)), where N is the length of array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : rituraj_jain

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.