Number of loops of size k starting from a specific node

Given two positive integer n, k. Consider an undirected complete connected graph of n nodes in a complete connected graph. The task is to calculate the number of ways in which one can start from any node and return to it by visiting K nodes.

Examples:

Input : n = 3, k = 3
Output : 2
cycle

Input : n = 4, k = 2
Output : 3

Lets f(n, k) be a function which return number of ways in which one can start from any node and return to it by visiting K nodes.
If we start and end from one node, then we have K – 1 choices to make for the intermediate nodes since we have already chosen one node in the beginning. For each intermediate choice, you have n – 1 options. So, this will yield (n – 1)k – 1 but then we have to remove all the choices cause smaller loops, so we subtract f(n, k – 1).
So, recurrence relation becomes,
f(n, k) = (n – 1)k – 1 – f(n, k – 1) with base case f(n, 2) = n – 1.
On expanding,
f(n, k) = (n – 1)k – 1 – (n – 1)k – 2 + (n – 1)k – 3 ….. (n – 1) (say eqn 1)

Dividing f(n, k) by (n – 1),
f(n, k)/(n – 1) = (n – 1)k – 2 – (n – 1)k – 3 + (n – 1)k – 4 ….. 1 (say eqn 2)

On adding eqn 1 and eqn 2,
f(n, k) + f(n, k)/(n – 1) = (n – 1)k – 1 + (-1)k
f(n, k) * ( (n -1) + 1 )/(n – 1) = (n – 1)k – 1 + (-1)k

 f(n, k) =  \frac{(n-1)^{k} + (-1)^{k}(n-1)}{n}

Below is the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find number of cycles of length
// k in a graph with n nodes.
#include <bits/stdc++.h>
using namespace std;
  
// Return the Number of ways from a
// node to make a loop of size K in undirected
// complete connected graph of N nodes
int numOfways(int n, int k)
{
    int p = 1;
  
    if (k % 2)
        p = -1;
  
    return (pow(n - 1, k) + p * (n - 1)) / n;
}
  
// Driven Program
int main()
{
    int n = 4, k = 2;
    cout << numOfways(n, k) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find number of
// cycles of length k in a graph
// with n nodes.
public class GFG {
      
    // Return the Number of ways
    // from a node to make a loop
    // of size K in undirected
    // complete connected graph of
    // N nodes
    static int numOfways(int n, int k)
    {
        int p = 1;
      
        if (k % 2 != 0)
            p = -1;
      
        return (int)(Math.pow(n - 1, k)
                    + p * (n - 1)) / n;
    }
      
    // Driver code
    public static void main(String args[])
    {
        int n = 4, k = 2;
      
        System.out.println(numOfways(n, k));
    }
}
  
// This code is contributed by Sam007.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python Program to find number of 
# cycles of length k in a graph 
# with n nodes.
  
# Return the Number of ways from a
# node to make a loop of size K in
# undirected complete connected 
# graph of N nodes
def numOfways(n,k):
      
    p = 1
  
    if (k % 2):
        p = -1
  
    return (pow(n - 1, k) +
                   p * (n - 1)) / n
  
# Driver code
n = 4
k = 2
print (numOfways(n, k))
  
# This code is contributed by Sam007.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find number of cycles
// of length k in a graph with n nodes.
using System;
  
class GFG {
      
    // Return the Number of ways from
    // a node to make a loop of size
    // K in undirected complete 
    // connected graph of N nodes
    static int numOfways(int n, int k)
    {
        int p = 1;
      
        if (k % 2 != 0)
            p = -1;
      
        return (int)(Math.Pow(n - 1, k)
                     + p * (n - 1)) / n;
    }
      
    // Driver code
    static void Main()
    {
        int n = 4, k = 2;
          
        Console.Write( numOfways(n, k) );
    }
}
  
// This code is contributed by Sam007.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find number
// of cycles of length
// k in a graph with n nodes.
  
// Return the Number of ways from a
// node to make a loop of size K 
// in undirected complete connected
// graph of N nodes
function numOfways( $n, $k)
{
$p = 1;
  
if ($k % 2)
    $p = -1;
  
return (pow($n - 1, $k) + 
        $p * ($n - 1)) / $n;
}
  
    // Driver Code
    $n = 4;
    $k = 2;
    echo numOfways($n, $k);
      
// This code is contributed by vt_m. 
?>

chevron_right


Output:

3


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Sam007, vt_m