Given an Undirected simple graph, We need to find how many triangles it can have. For example below graph have 2 triangles in it.

Let A[][] be adjacency matrix representation of graph. If we calculate A^{3}, then the number of triangle in Undirected Graph is equal to trace(A^{3}) / 6. Where trace(A) is the sum of the elements on the main diagonal of matrix A.

Trace of a graph represented as adjacency matrix A[V][V] is, trace(A[V][V]) = A[0][0] + A[1][1] + .... + A[V-1][V-1] Count of triangles = trace(A^{3}) / 6

Below is implementation of above formula.

## C++

`// A C++ program for finding ` `// number of triangles in an ` `// Undirected Graph. The program ` `// is for adjacency matrix ` `// representation of the graph ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Number of vertices in the graph ` `#define V 4 ` ` ` `// Utility function for matrix ` `// multiplication ` `void` `multiply(` `int` `A[][V], ` `int` `B[][V], ` `int` `C[][V]) ` `{ ` ` ` `for` `(` `int` `i = 0; i < V; i++) ` ` ` `{ ` ` ` `for` `(` `int` `j = 0; j < V; j++) ` ` ` `{ ` ` ` `C[i][j] = 0; ` ` ` `for` `(` `int` `k = 0; k < V; k++) ` ` ` `C[i][j] += A[i][k]*B[k][j]; ` ` ` `} ` ` ` `} ` `} ` ` ` `// Utility function to calculate ` `// trace of a matrix (sum of ` `// diagnonal elements) ` `int` `getTrace(` `int` `graph[][V]) ` `{ ` ` ` `int` `trace = 0; ` ` ` `for` `(` `int` `i = 0; i < V; i++) ` ` ` `trace += graph[i][i]; ` ` ` `return` `trace; ` `} ` ` ` `// Utility function for calculating ` `// number of triangles in graph ` `int` `triangleInGraph(` `int` `graph[][V]) ` `{ ` ` ` `// To Store graph^2 ` ` ` `int` `aux2[V][V]; ` ` ` ` ` `// To Store graph^3 ` ` ` `int` `aux3[V][V]; ` ` ` ` ` `// Initialising aux ` ` ` `// matrices with 0 ` ` ` `for` `(` `int` `i = 0; i < V; ++i) ` ` ` `for` `(` `int` `j = 0; j < V; ++j) ` ` ` `aux2[i][j] = aux3[i][j] = 0; ` ` ` ` ` `// aux2 is graph^2 now printMatrix(aux2); ` ` ` `multiply(graph, graph, aux2); ` ` ` ` ` `// after this multiplication aux3 is ` ` ` `// graph^3 printMatrix(aux3); ` ` ` `multiply(graph, aux2, aux3); ` ` ` ` ` `int` `trace = getTrace(aux3); ` ` ` `return` `trace / 6; ` `} ` ` ` `// driver code ` `int` `main() ` `{ ` ` ` ` ` `int` `graph[V][V] = {{0, 1, 1, 0}, ` ` ` `{1, 0, 1, 1}, ` ` ` `{1, 1, 0, 1}, ` ` ` `{0, 1, 1, 0} ` ` ` `}; ` ` ` ` ` `printf` `(` `"Total number of Triangle in Graph : %d\n"` `, ` ` ` `triangleInGraph(graph)); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to find number ` `// of triangles in an Undirected ` `// Graph. The program is for ` `// adjacency matrix representation ` `// of the graph ` `import` `java.io.*; ` ` ` `class` `Directed ` `{ ` ` ` `// Number of vertices in ` ` ` `// the graph ` ` ` `int` `V = ` `4` `; ` ` ` ` ` `// Utility function for ` ` ` `// matrix multiplication ` ` ` `void` `multiply(` `int` `A[][], ` `int` `B[][], ` ` ` `int` `C[][]) ` ` ` `{ ` ` ` `for` `(` `int` `i = ` `0` `; i < V; i++) ` ` ` `{ ` ` ` `for` `(` `int` `j = ` `0` `; j < V; j++) ` ` ` `{ ` ` ` `C[i][j] = ` `0` `; ` ` ` `for` `(` `int` `k = ` `0` `; k < V; ` ` ` `k++) ` ` ` `{ ` ` ` `C[i][j] += A[i][k]* ` ` ` `B[k][j]; ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// Utility function to calculate ` ` ` `// trace of a matrix (sum of ` ` ` `// diagnonal elements) ` ` ` `int` `getTrace(` `int` `graph[][]) ` ` ` `{ ` ` ` `int` `trace = ` `0` `; ` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < V; i++) ` ` ` `{ ` ` ` `trace += graph[i][i]; ` ` ` `} ` ` ` `return` `trace; ` ` ` `} ` ` ` ` ` `// Utility function for ` ` ` `// calculating number of ` ` ` `// triangles in graph ` ` ` `int` `triangleInGraph(` `int` `graph[][]) ` ` ` `{ ` ` ` `// To Store graph^2 ` ` ` `int` `[][] aux2 = ` `new` `int` `[V][V]; ` ` ` ` ` `// To Store graph^3 ` ` ` `int` `[][] aux3 = ` `new` `int` `[V][V]; ` ` ` ` ` `// Initialising aux matrices ` ` ` `// with 0 ` ` ` `for` `(` `int` `i = ` `0` `; i < V; ++i) ` ` ` `{ ` ` ` `for` `(` `int` `j = ` `0` `; j < V; ++j) ` ` ` `{ ` ` ` `aux2[i][j] = aux3[i][j] = ` `0` `; ` ` ` `} ` ` ` `} ` ` ` ` ` `// aux2 is graph^2 now ` ` ` `// printMatrix(aux2) ` ` ` `multiply(graph, graph, aux2); ` ` ` ` ` `// after this multiplication aux3 ` ` ` `// is graph^3 printMatrix(aux3) ` ` ` `multiply(graph, aux2, aux3); ` ` ` ` ` `int` `trace = getTrace(aux3); ` ` ` ` ` `return` `trace / ` `6` `; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String args[]) ` ` ` `{ ` ` ` `Directed obj = ` `new` `Directed(); ` ` ` ` ` `int` `graph[][] = { {` `0` `, ` `1` `, ` `1` `, ` `0` `}, ` ` ` `{` `1` `, ` `0` `, ` `1` `, ` `1` `}, ` ` ` `{` `1` `, ` `1` `, ` `0` `, ` `1` `}, ` ` ` `{` `0` `, ` `1` `, ` `1` `, ` `0` `} ` ` ` `}; ` ` ` ` ` `System.out.println(` `"Total number of Triangle in Graph : "` `+ ` ` ` `obj.triangleInGraph(graph)); ` ` ` `} ` `} ` ` ` `// This code is contributed by Anshika Goyal. ` |

*chevron_right*

*filter_none*

## Python3

`# A Python3 program for finding number of ` `# triangles in an Undirected Graph. The ` `# program is for adjacency matrix ` `# representation of the graph ` ` ` `# Utility function for matrix ` `# multiplication ` `def` `multiply(A, B, C): ` ` ` `global` `V ` ` ` `for` `i ` `in` `range` `(V): ` ` ` `for` `j ` `in` `range` `(V): ` ` ` `C[i][j] ` `=` `0` ` ` `for` `k ` `in` `range` `(V): ` ` ` `C[i][j] ` `+` `=` `A[i][k] ` `*` `B[k][j] ` ` ` `# Utility function to calculate ` `# trace of a matrix (sum of ` `# diagnonal elements) ` `def` `getTrace(graph): ` ` ` `global` `V ` ` ` `trace ` `=` `0` ` ` `for` `i ` `in` `range` `(V): ` ` ` `trace ` `+` `=` `graph[i][i] ` ` ` `return` `trace ` ` ` `# Utility function for calculating ` `# number of triangles in graph ` `def` `triangleInGraph(graph): ` ` ` `global` `V ` ` ` ` ` `# To Store graph^2 ` ` ` `aux2 ` `=` `[[` `None` `] ` `*` `V ` `for` `i ` `in` `range` `(V)] ` ` ` ` ` `# To Store graph^3 ` ` ` `aux3 ` `=` `[[` `None` `] ` `*` `V ` `for` `i ` `in` `range` `(V)] ` ` ` ` ` `# Initialising aux ` ` ` `# matrices with 0 ` ` ` `for` `i ` `in` `range` `(V): ` ` ` `for` `j ` `in` `range` `(V): ` ` ` `aux2[i][j] ` `=` `aux3[i][j] ` `=` `0` ` ` ` ` `# aux2 is graph^2 now printMatrix(aux2) ` ` ` `multiply(graph, graph, aux2) ` ` ` ` ` `# after this multiplication aux3 is ` ` ` `# graph^3 printMatrix(aux3) ` ` ` `multiply(graph, aux2, aux3) ` ` ` ` ` `trace ` `=` `getTrace(aux3) ` ` ` `return` `trace ` `/` `/` `6` ` ` `# Driver Code ` ` ` `# Number of vertices in the graph ` `V ` `=` `4` `graph ` `=` `[[` `0` `, ` `1` `, ` `1` `, ` `0` `], ` ` ` `[` `1` `, ` `0` `, ` `1` `, ` `1` `], ` ` ` `[` `1` `, ` `1` `, ` `0` `, ` `1` `], ` ` ` `[` `0` `, ` `1` `, ` `1` `, ` `0` `]] ` ` ` `print` `(` `"Total number of Triangle in Graph :"` `, ` ` ` `triangleInGraph(graph)) ` ` ` `# This code is contributed by PranchalK ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find number ` `// of triangles in an Undirected ` `// Graph. The program is for ` `// adjacency matrix representation ` `// of the graph ` `using` `System; ` ` ` `class` `GFG ` `{ ` `// Number of vertices ` `// in the graph ` `int` `V = 4; ` ` ` `// Utility function for ` `// matrix multiplication ` `void` `multiply(` `int` `[,]A, ` `int` `[,]B, ` ` ` `int` `[,]C) ` `{ ` ` ` `for` `(` `int` `i = 0; i < V; i++) ` ` ` `{ ` ` ` `for` `(` `int` `j = 0; j < V; j++) ` ` ` `{ ` ` ` `C[i, j] = 0; ` ` ` `for` `(` `int` `k = 0; k < V; ` ` ` `k++) ` ` ` `{ ` ` ` `C[i, j] += A[i, k]* ` ` ` `B[k, j]; ` ` ` `} ` ` ` `} ` ` ` `} ` `} ` ` ` `// Utility function to ` `// calculate trace of ` `// a matrix (sum of ` `// diagnonal elements) ` `int` `getTrace(` `int` `[,]graph) ` `{ ` ` ` `int` `trace = 0; ` ` ` ` ` `for` `(` `int` `i = 0; i < V; i++) ` ` ` `{ ` ` ` `trace += graph[i, i]; ` ` ` `} ` ` ` `return` `trace; ` `} ` ` ` `// Utility function for ` `// calculating number of ` `// triangles in graph ` `int` `triangleInGraph(` `int` `[,]graph) ` `{ ` ` ` `// To Store graph^2 ` ` ` `int` `[,] aux2 = ` `new` `int` `[V, V]; ` ` ` ` ` `// To Store graph^3 ` ` ` `int` `[,] aux3 = ` `new` `int` `[V, V]; ` ` ` ` ` `// Initialising aux matrices ` ` ` `// with 0 ` ` ` `for` `(` `int` `i = 0; i < V; ++i) ` ` ` `{ ` ` ` `for` `(` `int` `j = 0; j < V; ++j) ` ` ` `{ ` ` ` `aux2[i, j] = aux3[i, j] = 0; ` ` ` `} ` ` ` `} ` ` ` ` ` `// aux2 is graph^2 now ` ` ` `// printMatrix(aux2) ` ` ` `multiply(graph, graph, aux2); ` ` ` ` ` `// after this multiplication aux3 ` ` ` `// is graph^3 printMatrix(aux3) ` ` ` `multiply(graph, aux2, aux3); ` ` ` ` ` `int` `trace = getTrace(aux3); ` ` ` ` ` `return` `trace / 6; ` `} ` ` ` `// Driver code ` `public` `static` `void` `Main() ` `{ ` ` ` `GFG obj = ` `new` `GFG(); ` ` ` ` ` `int` `[,]graph = {{0, 1, 1, 0}, ` ` ` `{1, 0, 1, 1}, ` ` ` `{1, 1, 0, 1}, ` ` ` `{0, 1, 1, 0}}; ` ` ` ` ` `Console.WriteLine(` `"Total number of "` `+ ` ` ` `"Triangle in Graph : "` `+ ` ` ` `obj.triangleInGraph(graph)); ` `} ` `} ` ` ` `// This code is contributed by anuj_67. ` |

*chevron_right*

*filter_none*

**Output:**

Total number of Triangle in Graph : 2

**How does this work?**

If we compute A^{n} for an adjacency matrix representation of graph, then a value A^{n}[i][j] represents number of distinct walks between vertex i to j in graph. In A^{3}, we get all distinct paths of length 3 between every pair of vertices.

A triangle is a cyclic path of length three, i.e. begins and ends at same vertex. So A^{3}[i][i] represents a triangle beginning and ending with vertex i. Since a triangle has three vertices and it is counted for every vertex, we need to divide result by 3. Furthermore, since the graph is undirected, every triangle twice as i-p-q-j and i-q-p-j, so we divide by 2 also. Therefore, number of triangles is trace(A^{3}) / 6.

**Time Complexity: **

The time complexity of above algorithm is O(V^{3}) where V is number of vertices in the graph, we can improve the performance to O(V^{2.8074}) using Strassen’s matrix multiplication algorithm.

**References:**

http://www.d.umn.edu/math/Technical%20Reports/Technical%20Reports%202007-/TR%202012/yang.pdf

Number of Triangles in Directed and Undirected Graphs

This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.