# Maximum number of edges among all connected components of an undirected graph

Given integers ‘N’ and ‘K’ where, N is the number of vertices of an undirected graph and ‘K’ denotes the number of edges in the same graph (each edge is denoted by a pair of integers where i, j means that the vertex ‘i’ is directly connected to the vertex ‘j’ in the graph).

The task is to find the maximum number of edges among all the connected components in the given graph.

Examples:

Input: N = 6, K = 4,
Edges = {{1, 2}, {2, 3}, {3, 1}, {4, 5}}
Output: 3
Here, graph has 3 components
1st component 1-2-3-1 : 3 edges
2nd component 4-5 : 1 edges
3rd component 6 : 0 edges
max(3, 1, 0) = 3 edges

Input: N = 3, K = 2,
Edges = {{1, 2}, {2, 3}}
Output: 2

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Using Depth First Search, find the sum of the degrees of each of the edges in all the connected components separately.
• Now, according to Handshaking Lemma, the total number of edges in a connected component of an undirected graph is equal to half of the total sum of the degrees of all of its vertices.
• Print the maximum number of edges among all the connected components.

Below is the implementation of the above approach:

## C++

 `// C++ program to find the connected component ` `// with maximum number of edges ` `#include ` `using` `namespace` `std; ` ` `  `// DFS function ` `int` `dfs(``int` `s, vector<``int``> adj[], vector<``bool``> visited, ` `                                             ``int` `nodes) ` `{ ` `    ``// Adding all the edges connected to the vertex ` `    ``int` `adjListSize = adj[s].size(); ` `    ``visited[s] = ``true``; ` `    ``for` `(``long` `int` `i = 0; i < adj[s].size(); i++) { ` `        ``if` `(visited[adj[s][i]] == ``false``) { ` `            ``adjListSize += dfs(adj[s][i], adj, visited, nodes); ` `        ``} ` `    ``} ` `    ``return` `adjListSize; ` `} ` ` `  `int` `maxEdges(vector<``int``> adj[], ``int` `nodes) ` `{ ` `    ``int` `res = INT_MIN; ` `    ``vector<``bool``> visited(nodes, ``false``); ` `    ``for` `(``long` `int` `i = 1; i <= nodes; i++) { ` `        ``if` `(visited[i] == ``false``) { ` `            ``int` `adjListSize = dfs(i, adj, visited, nodes); ` `            ``res = max(res, adjListSize/2); ` `        ``}       ` `    ``} ` `    ``return` `res; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `nodes = 3; ` `    ``vector<``int``> adj[nodes+1]; ` ` `  `    ``// Edge from vertex 1 to vertex 2 ` `    ``adj.push_back(2); ` `    ``adj.push_back(1); ` ` `  `    ``// Edge from vertex 2 to vertex 3 ` `    ``adj.push_back(3); ` `    ``adj.push_back(2); ` ` `  `    ``cout << maxEdges(adj, nodes); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find the connected component  ` `// with maximum number of edges  ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` `     `  `// DFS function  ` `static` `int` `dfs(``int` `s, Vector> adj,``boolean` `visited[],  ` `                        ``int` `nodes)  ` `{  ` `    ``// Adding all the edges connected to the vertex  ` `    ``int` `adjListSize = adj.get(s).size();  ` `    ``visited[s] = ``true``;  ` `    ``for` `(``int` `i = ``0``; i < adj.get(s).size(); i++) ` `    ``{  ` `        ``if` `(visited[adj.get(s).get(i)] == ``false``)  ` `        ``{  ` `            ``adjListSize += dfs(adj.get(s).get(i), adj, visited, nodes);  ` `        ``}  ` `    ``}  ` `    ``return` `adjListSize;  ` `}  ` ` `  `static` `int` `maxEdges(Vector> adj, ``int` `nodes)  ` `{  ` `    ``int` `res = Integer.MIN_VALUE;  ` `    ``boolean` `visited[]=``new` `boolean``[nodes+``1``];  ` `    ``for` `(``int` `i = ``1``; i <= nodes; i++) ` `    ``{  ` `        ``if` `(visited[i] == ``false``)  ` `        ``{  ` `            ``int` `adjListSize = dfs(i, adj, visited, nodes);  ` `            ``res = Math.max(res, adjListSize/``2``);  ` `        ``}  ` `    ``}  ` `    ``return` `res;  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``int` `nodes = ``3``;  ` `    ``Vector> adj=``new` `Vector>(); ` `     `  `    ``for``(``int` `i = ``0``; i < nodes + ``1``; i++) ` `    ``adj.add(``new` `Vector()); ` ` `  `    ``// Edge from vertex 1 to vertex 2  ` `    ``adj.get(``1``).add(``2``);  ` `    ``adj.get(``2``).add(``1``);  ` ` `  `    ``// Edge from vertex 2 to vertex 3  ` `    ``adj.get(``2``).add(``3``);  ` `    ``adj.get(``3``).add(``2``);  ` `     `  ` `  `    ``System.out.println(maxEdges(adj, nodes));  ` `} ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `# Python3 program to find the connected  ` `# component with maximum number of edges ` `from` `sys ``import` `maxsize ` ` `  `INT_MIN ``=` `-``maxsize ` ` `  `# DFS function ` `def` `dfs(s: ``int``, adj: ``list``,  ` `        ``visited: ``list``, nodes: ``int``) ``-``> ``int``: ` ` `  `    ``# Adding all the edges  ` `    ``# connected to the vertex ` `    ``adjListSize ``=` `len``(adj[s]) ` `    ``visited[s] ``=` `True` `     `  `    ``for` `i ``in` `range``(``len``(adj[s])): ` ` `  `        ``if` `visited[adj[s][i]] ``=``=` `False``: ` `            ``adjListSize ``+``=` `dfs(adj[s][i], adj,  ` `                               ``visited, nodes) ` `                                `  `    ``return` `adjListSize ` `     `  `def` `maxEdges(adj: ``list``, nodes: ``int``) ``-``> ``int``: ` `    ``res ``=` `INT_MIN ` `    ``visited ``=` `[``False``] ``*` `(nodes ``+` `1``) ` `     `  `    ``for` `i ``in` `range``(``1``, nodes ``+` `1``): ` ` `  `        ``if` `visited[i] ``=``=` `False``: ` `            ``adjListSize ``=` `dfs(i, adj, ` `                              ``visited, nodes) ` `            ``res ``=` `max``(res, adjListSize ``/``/` `2``) ` `             `  `    ``return` `res ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``nodes ``=` `3` `    ``adj ``=` `[``0``] ``*` `(nodes ``+` `1``) ` `     `  `    ``for` `i ``in` `range``(nodes ``+` `1``): ` `        ``adj[i] ``=` `[] ` ` `  `    ``# Edge from vertex 1 to vertex 2 ` `    ``adj[``1``].append(``2``) ` `    ``adj[``2``].append(``1``) ` ` `  `    ``# Edge from vertex 2 to vertex 3 ` `    ``adj[``2``].append(``3``) ` `    ``adj[``3``].append(``2``) ` ` `  `    ``print``(maxEdges(adj, nodes)) ` ` `  `# This code is contributed by sanjeev2552 `

## C#

 `// C# program to find the connected component  ` `// with maximum number of edges  ` `using` `System; ` `using` `System.Collections.Generic;              ` ` `  `class` `GFG  ` `{  ` `     `  `// DFS function  ` `static` `int` `dfs(``int` `s, List> adj, ` `               ``bool` `[]visited, ``int` `nodes)  ` `{  ` `    ``// Adding all the edges connected to the vertex  ` `    ``int` `adjListSize = adj[s].Count;  ` `    ``visited[s] = ``true``;  ` `    ``for` `(``int` `i = 0; i < adj[s].Count; i++)  ` `    ``{  ` `        ``if` `(visited[adj[s][i]] == ``false``)  ` `        ``{  ` `            ``adjListSize += dfs(adj[s][i], adj, ` `                               ``visited, nodes);  ` `        ``}  ` `    ``}  ` `    ``return` `adjListSize;  ` `}  ` ` `  `static` `int` `maxEdges(List> adj, ``int` `nodes)  ` `{  ` `    ``int` `res = ``int``.MinValue;  ` `    ``bool` `[]visited = ``new` `bool``[nodes + 1];  ` `    ``for` `(``int` `i = 1; i <= nodes; i++)  ` `    ``{  ` `        ``if` `(visited[i] == ``false``)  ` `        ``{  ` `            ``int` `adjListSize = dfs(i, adj, visited, nodes);  ` `            ``res = Math.Max(res, adjListSize / 2);  ` `        ``}  ` `    ``}  ` `    ``return` `res;  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `Main(String []args)  ` `{  ` `    ``int` `nodes = 3;  ` `    ``List> adj = ``new` `List>();  ` `     `  `    ``for``(``int` `i = 0; i < nodes + 1; i++)  ` `    ``adj.Add(``new` `List<``int``>());  ` ` `  `    ``// Edge from vertex 1 to vertex 2  ` `    ``adj.Add(2);  ` `    ``adj.Add(1);  ` ` `  `    ``// Edge from vertex 2 to vertex 3  ` `    ``adj.Add(3);  ` `    ``adj.Add(2);  ` `     `  `    ``Console.WriteLine(maxEdges(adj, nodes));  ` `}  ` `}  ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```2
```

Time Complexity : O(nodes + edges) (Same as DFS)

Note : We can also use BFS to solve this problem. We simply need to traverse connected components in an undirected graph.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

79

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.