Number of paths with exactly k coins
Given a matrix where every cell has some number of coins. Count number of ways to reach bottom right from top left with exactly k coins. We can move to (i+1, j) and (i, j+1) from a cell (i, j).
Example:
Input: k = 12 mat[][] = { {1, 2, 3}, {4, 6, 5}, {3, 2, 1} }; Output: 2 There are two paths with 12 coins 1 -> 2 -> 6 -> 2 -> 1 1 -> 2 -> 3 -> 5 -> 1
We strongly recommend that you click here and practice it, before moving on to the solution.
The above problem can be recursively defined as below:
pathCount(m, n, k): Number of paths to reach mat[m][n] from mat[0][0] with exactly k coins If (m == 0 and n == 0) return 1 if mat[0][0] == k else return 0 Else: pathCount(m, n, k) = pathCount(m-1, n, k - mat[m][n]) + pathCount(m, n-1, k - mat[m][n])
Below is the implementation of above recursive algorithm.
C++
// A Naive Recursive C++ program // to count paths with exactly // 'k' coins #include <bits/stdc++.h> #define R 3 #define C 3 using namespace std; // Recursive function to count paths with sum k from // (0, 0) to (m, n) int pathCountRec( int mat[][C], int m, int n, int k) { // Base cases if (m < 0 || n < 0) return 0; if (m==0 && n==0) return (k == mat[m][n]); // (m, n) can be reached either through (m-1, n) or // through (m, n-1) return pathCountRec(mat, m-1, n, k-mat[m][n]) + pathCountRec(mat, m, n-1, k-mat[m][n]); } // A wrapper over pathCountRec() int pathCount( int mat[][C], int k) { return pathCountRec(mat, R-1, C-1, k); } // Driver program int main() { int k = 12; int mat[R][C] = { {1, 2, 3}, {4, 6, 5}, {3, 2, 1} }; cout << pathCount(mat, k); return 0; } |
Java
// A Naive Recursive Java program to // count paths with exactly 'k' coins class GFG { static final int R = 3 ; static final int C = 3 ; // Recursive function to count paths with sum k from // (0, 0) to (m, n) static int pathCountRec( int mat[][], int m, int n, int k) { // Base cases if (m < 0 || n < 0 ) { return 0 ; } if (m == 0 && n == 0 && (k == mat[m][n])) { return 1 ; } // (m, n) can be reached either through (m-1, n) or // through (m, n-1) return pathCountRec(mat, m - 1 , n, k - mat[m][n]) + pathCountRec(mat, m, n - 1 , k - mat[m][n]); } // A wrapper over pathCountRec() static int pathCount( int mat[][], int k) { return pathCountRec(mat, R - 1 , C - 1 , k); } // Driver code public static void main(String[] args) { int k = 12 ; int mat[][] = {{ 1 , 2 , 3 }, { 4 , 6 , 5 }, { 3 , 2 , 1 } }; System.out.println(pathCount(mat, k)); } } /* This Java code is contributed by Rajput-Ji*/ |
Python3
# A Naive Recursive Python program to # count paths with exactly 'k' coins R = 3 C = 3 # Recursive function to count paths # with sum k from (0, 0) to (m, n) def pathCountRec(mat, m, n, k): # Base cases if m < 0 or n < 0 : return 0 elif m = = 0 and n = = 0 : return k = = mat[m][n] # #(m, n) can be reached either # through (m-1, n) or through # (m, n-1) return (pathCountRec(mat, m - 1 , n, k - mat[m][n]) + pathCountRec(mat, m, n - 1 , k - mat[m][n])) # A wrapper over pathCountRec() def pathCount(mat, k): return pathCountRec(mat, R - 1 , C - 1 , k) # Driver Program k = 12 mat = [[ 1 , 2 , 3 ], [ 4 , 6 , 5 ], [ 3 , 2 , 1 ]] print (pathCount(mat, k)) # This code is contributed by Shrikant13. |
C#
using System; // A Naive Recursive c# program to // count paths with exactly 'k' coins public class GFG { public const int R = 3; public const int C = 3; // Recursive function to count paths with sum k from // (0, 0) to (m, n) public static int pathCountRec( int [][] mat, int m, int n, int k) { // Base cases if (m < 0 || n < 0) { return 0; } if (m == 0 && n == 0 && (k == mat[m][n])) { return 1; } // (m, n) can be reached either through (m-1, n) or // through (m, n-1) return pathCountRec(mat, m - 1, n, k - mat[m][n]) + pathCountRec(mat, m, n - 1, k - mat[m][n]); } // A wrapper over pathCountRec() public static int pathCount( int [][] mat, int k) { return pathCountRec(mat, R - 1, C - 1, k); } // Driver code public static void Main( string [] args) { int k = 12; int [][] mat = new int [][] { new int [] {1, 2, 3}, new int [] {4, 6, 5}, new int [] {3, 2, 1} }; Console.WriteLine(pathCount(mat, k)); } } // This code is contributed by Shrikant13 |
PHP
<?php // A Naive Recursive PHP program to // count paths with exactly 'k' coins $R = 3; $C = 3; // Recursive function to count paths // with sum k from (0, 0) to (m, n) function pathCountRec( $mat , $m , $n , $k ) { // Base cases if ( $m < 0 or $n < 0) return 0; if ( $m == 0 and $n == 0) return ( $k == $mat [ $m ][ $n ]); // (m, n) can be reached either // through (m-1, n) or through // (m, n-1) return pathCountRec( $mat , $m - 1, $n , $k - $mat [ $m ][ $n ]) + pathCountRec( $mat , $m , $n - 1, $k - $mat [ $m ][ $n ]); } // A wrapper over pathCountRec() function pathCount( $mat , $k ) { global $R , $C ; return pathCountRec( $mat , $R -1, $C -1, $k ); } // Driver program $k = 12; $mat = array ( array (1, 2, 3), array (4, 6, 5), array (3, 2, 1) ); echo pathCount( $mat , $k ); // This code is contributed by anuj_67. ?> |
Output:
2
The time complexity of above solution recursive is exponential. We can solve this problem in Pseudo Polynomial Time (time complexity is dependent on numeric value of input) using Dynamic Programming. The idea is to use a 3 dimensional table dp[m][n][k] where m is row number, n is column number and k is number of coins. Below is Dynamic Programming based the implementation.
C++
// A Dynamic Programming based C++ program to count paths with // exactly 'k' coins #include <bits/stdc++.h> #define R 3 #define C 3 #define MAX_K 1000 using namespace std; int dp[R][C][MAX_K]; int pathCountDPRecDP( int mat[][C], int m, int n, int k) { // Base cases if (m < 0 || n < 0) return 0; if (m==0 && n==0) return (k == mat[m][n]); // If this subproblem is already solved if (dp[m][n][k] != -1) return dp[m][n][k]; // (m, n) can be reached either through (m-1, n) or // through (m, n-1) dp[m][n][k] = pathCountDPRecDP(mat, m-1, n, k-mat[m][n]) + pathCountDPRecDP(mat, m, n-1, k-mat[m][n]); return dp[m][n][k]; } // This function mainly initializes dp[][][] and calls // pathCountDPRecDP() int pathCountDP( int mat[][C], int k) { memset (dp, -1, sizeof dp); return pathCountDPRecDP(mat, R-1, C-1, k); } // Driver Program to test above functions int main() { int k = 12; int mat[R][C] = { {1, 2, 3}, {4, 6, 5}, {3, 2, 1} }; cout << pathCountDP(mat, k); return 0; } |
Java
// A Dynamic Programming based JAVA program to count paths with // exactly 'k' coins class GFG { static final int R = 3 ; static final int C = 3 ; static final int MAX_K = 100 ; static int [][][]dp= new int [R][C][MAX_K]; static int pathCountDPRecDP( int [][]mat, int m, int n, int k) { // Base cases if (m < 0 || n < 0 ) return 0 ; if (m== 0 && n== 0 ) return (k == mat[m][n] ? 1 : 0 ); // If this subproblem is already solved if (dp[m][n][k] != - 1 ) return dp[m][n][k]; // (m, n) can be reached either through (m-1, n) or // through (m, n-1) dp[m][n][k] = pathCountDPRecDP(mat, m- 1 , n, k-mat[m][n]) + pathCountDPRecDP(mat, m, n- 1 , k-mat[m][n]); return dp[m][n][k]; } // This function mainly initializes dp[][][] and calls // pathCountDPRecDP() static int pathCountDP( int [][]mat, int k) { for ( int i= 0 ;i<R;i++) for ( int j= 0 ;j<C;j++) for ( int l= 0 ;l<MAX_K;l++) dp[i][j][l]=- 1 ; return pathCountDPRecDP(mat, R- 1 , C- 1 , k); } // Driver Program to test above functions public static void main(String []args) { int k = 12 ; int [][] mat = new int [][] { new int [] { 1 , 2 , 3 }, new int [] { 4 , 6 , 5 }, new int [] { 3 , 2 , 1 } }; System.out.println(pathCountDP(mat, k)); } } // This code is contributed by ihritik |
Python3
# A Dynamic Programming based Python3 program to # count paths with exactly 'k' coins R = 3 C = 3 MAX_K = 1000 def pathCountDPRecDP(mat, m, n, k): # Base cases if m < 0 or n < 0 : return 0 elif m = = 0 and n = = 0 : return k = = mat[m][n] # If this subproblem is already solved if (dp[m][n][k] ! = - 1 ): return dp[m][n][k] # #(m, n) can be reached either # through (m-1, n) or through # (m, n-1) dp[m][n][k] = (pathCountDPRecDP(mat, m - 1 , n, k - mat[m][n]) + pathCountDPRecDP(mat, m, n - 1 , k - mat[m][n])) return dp[m][n][k] # A wrapper over pathCountDPRecDP() def pathCountDP(mat, k): return pathCountDPRecDP(mat, R - 1 , C - 1 , k) # Driver Code k = 12 # Initialising dp[][][] dp = [[ [ - 1 for col in range (MAX_K)] for col in range (C)] for row in range (R)] mat = [[ 1 , 2 , 3 ], [ 4 , 6 , 5 ], [ 3 , 2 , 1 ]] print (pathCountDP(mat, k)) # This code is contributed by ashutosh450 |
C#
// A Dynamic Programming based C# program // to count paths with exactly 'k' coins using System; class GFG { static readonly int R = 3; static readonly int C = 3; static readonly int MAX_K = 100; static int [,,]dp = new int [R, C, MAX_K]; static int pathCountDPRecDP( int [,]mat, int m, int n, int k) { // Base cases if (m < 0 || n < 0) return 0; if (m == 0 && n == 0) return (k == mat[m, n] ? 1 : 0); // If this subproblem is already solved if (dp[m, n, k] != -1) return dp[m, n, k]; // (m, n) can be reached either through (m-1, n) or // through (m, n-1) dp[m, n, k] = pathCountDPRecDP(mat, m - 1, n, k - mat[m, n]) + pathCountDPRecDP(mat, m, n - 1, k - mat[m, n]); return dp[m, n, k]; } // This function mainly initializes [,]dp[] and // calls pathCountDPRecDP() static int pathCountDP( int [,]mat, int k) { for ( int i = 0; i < R; i++) for ( int j = 0; j < C; j++) for ( int l = 0; l < MAX_K; l++) dp[i, j, l] = -1; return pathCountDPRecDP(mat, R - 1, C - 1, k); } // Driver Code public static void Main(String []args) { int k = 12; int [,] mat = { {1, 2, 3}, {4, 6, 5}, {3, 2, 1}}; Console.WriteLine(pathCountDP(mat, k)); } } // This code is contributed by PrinciRaj1992 |
Output:
2
Time complexity of this solution is O(m*n*k).
Thanks to Gaurav Ahirwar for suggesting above solution.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Recommended Posts:
- Find minimum number of coins that make a given value
- Minimum number of coins that can generate all the values in the given range
- Number of palindromic paths in a matrix
- Count number of paths with at-most k turns
- Number of Paths of Weight W in a K-ary tree
- Number of different cyclic paths of length N in a tetrahedron
- Paths with maximum number of 'a' from (1, 1) to (X, Y) vertically or horizontally
- Total number of decreasing paths in a matrix
- Maths behind number of paths in matrix problem
- Find the number of paths of length K in a directed graph
- Number of paths from source to destination in a directed acyclic graph
- Number of shortest paths to reach every cell from bottom-left cell in the grid
- Count number of paths whose weight is exactly X and has at-least one edge of weight M
- Burst Balloon to maximize coins
- Probability of getting at least K heads in N tosses of Coins