Open In App
Related Articles

Naive algorithm for Pattern Searching

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given text string with length n and a pattern with length m, the task is to prints all occurrences of pattern in text.
Note: You may assume that n > m.

Examples: 

Input:  text = “THIS IS A TEST TEXT”, pattern = “TEST”
Output: Pattern found at index 10

Input:  text =  “AABAACAADAABAABA”, pattern = “AABA”
Output: Pattern found at index 0, Pattern found at index 9, Pattern found at index 12

Pattern searching

Naive Pattern Searching algorithm: 

Slide the pattern over text one by one and check for a match. If a match is found, then slide by 1 again to check for subsequent matches. 

C++

// C++ program for Naive Pattern
// Searching algorithm
#include <bits/stdc++.h>
using namespace std;
 
void search(string& pat, string txt)
{
    int M = pat.size();
    int N = txt.size();
 
    /* A loop to slide pat[] one by one */
    for (int i = 0; i <= N - M; i++) {
        int j;
 
        /* For current index i, check for pattern match */
        for (j = 0; j < M; j++)
            if (txt[i + j] != pat[j])
                break;
 
        if (j
            == M) // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            cout << "Pattern found at index " << i << endl;
    }
}
 
// Driver's Code
int main()
{
    string txt = "AABAACAADAABAAABAA";
    string pat = "AABA";
 
    // Function call
    search(pat, txt);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai

                    

C

// C program for Naive Pattern Searching algorithm
#include <stdio.h>
#include <string.h>
 
void search(char* pat, char* txt)
{
    int M = strlen(pat);
    int N = strlen(txt);
 
    /* A loop to slide pat[] one by one */
    for (int i = 0; i <= N - M; i++) {
        int j;
 
        /* For current index i, check for pattern match */
        for (j = 0; j < M; j++)
            if (txt[i + j] != pat[j])
                break;
 
        if (j
            == M) // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            printf("Pattern found at index %d \n", i);
    }
}
 
// Driver's code
int main()
{
    char txt[] = "AABAACAADAABAAABAA";
    char pat[] = "AABA";
   
      // Function call
    search(pat, txt);
    return 0;
}

                    

Java

// Java program for Naive Pattern Searching
 
public class NaiveSearch {
 
    static void search(String pat, String txt)
    {
        int l1 = pat.length();
        int l2 = txt.length();
        int i = 0, j = l2 - 1;
 
        for (i = 0, j = l2 - 1; j < l1;) {
 
            if (txt.equals(pat.substring(i, j + 1))) {
                System.out.println("Pattern found at index "
                                   + i);
            }
            i++;
            j++;
        }
    }
     
      // Driver's code
    public static void main(String args[])
    {
        String pat = "AABAACAADAABAAABAA";
        String txt = "AABA";
     
          // Function call
        search(pat, txt);
    }
}
// This code is contributed by D. Vishnu Rahul Varma

                    

Python3

# Python3 program for Naive Pattern
# Searching algorithm
 
 
def search(pat, txt):
    M = len(pat)
    N = len(txt)
 
    # A loop to slide pat[] one by one */
    for i in range(N - M + 1):
        j = 0
 
        # For current index i, check
        # for pattern match */
        while(j < M):
            if (txt[i + j] != pat[j]):
                break
            j += 1
 
        if (j == M):
            print("Pattern found at index ", i)
 
 
# Driver's Code
if __name__ == '__main__':
    txt = "AABAACAADAABAAABAA"
    pat = "AABA"
     
    # Function call
    search(pat, txt)
 
# This code is contributed
# by PrinciRaj1992

                    

C#

// C# program for Naive Pattern Searching
using System;
 
class GFG {
 
    public static void search(String txt, String pat)
    {
        int M = pat.Length;
        int N = txt.Length;
 
        /* A loop to slide pat one by one */
        for (int i = 0; i <= N - M; i++) {
            int j;
 
            /* For current index i, check for pattern
            match */
            for (j = 0; j < M; j++)
                if (txt[i + j] != pat[j])
                    break;
 
            // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
            if (j == M)
                Console.WriteLine("Pattern found at index "
                                  + i);
        }
    }
 
    // Driver's code
    public static void Main()
    {
        String txt = "AABAACAADAABAAABAA";
        String pat = "AABA";
       
          // Function call
        search(txt, pat);
    }
}
// This code is Contributed by Sam007

                    

Javascript

// Javascript program for Naive Pattern Searching
 
function search(txt, pat)
{
    let M = pat.length;
    let N = txt.length;
 
    /* A loop to slide pat one by one */
    for (let i = 0; i <= N - M; i++) {
        let j;
 
        /* For current index i, check for pattern
        match */
        for (j = 0; j < M; j++)
            if (txt[i + j] != pat[j])
                break;
 
        // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
        if (j == M)
            document.write("Pattern found at index " + i + "</br>");
    }
}
 
let txt = "AABAACAADAABAAABAA";
let pat = "AABA";
search(txt, pat);

                    

PHP

<?php
// PHP program for Naive Pattern
// Searching algorithm
 
function search($pat, $txt)
{
    $M = strlen($pat);
    $N = strlen($txt);
 
    // A loop to slide pat[]
    // one by one
    for ($i = 0; $i <= $N - $M; $i++)
    {
 
        // For current index i,
        // check for pattern match
        for ($j = 0; $j < $M; $j++)
            if ($txt[$i + $j] != $pat[$j])
                break;
 
        // if pat[0...M-1] =
        // txt[i, i+1, ...i+M-1]
        if ($j == $M)
            echo "Pattern found at index ", $i."\n";
    }
}
 
    // Driver Code
    $txt = "AABAACAADAABAAABAA";
    $pat = "AABA";
    search($pat, $txt);
     
// This code is contributed by Sam007
?>

                    

Output
Pattern found at index 0 
Pattern found at index 9 
Pattern found at index 13 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Complexity Analysis of Naive algorithm for Pattern Searching:

Best Case: O(n)

  • When the pattern is found at the very beginning of the text (or very early on).
  • The algorithm will perform a constant number of comparisons, typically on the order of O(n) comparisons, where n is the length of the pattern.

Worst Case: O(n2)

  • When the pattern doesn’t appear in the text at all or appears only at the very end.
  • The algorithm will perform O((n-m+1)*m) comparisons, where n is the length of the text and m is the length of the pattern.
  • In the worst case, for each position in the text, the algorithm may need to compare the entire pattern against the text.




Last Updated : 20 Oct, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads