Open In App
Related Articles

Longest prefix which is also suffix

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a string s, find the length of the longest prefix, which is also a suffix. The prefix and suffix should not overlap.

Examples: 

Input : S = aabcdaabc
Output : 4
Explanation: The string “aabc” is the longest prefix which is also suffix.

Input : S = abcab
Output : 2

Input : S = aaaa
Output : 2

Recommended Practice

Naive approach:

Since overlapping prefixes and suffixes is not allowed, we break the string from the middle and start matching left and right strings. If they are equal return size of one string, else they try for shorter lengths on both sides.

Below is a solution to the above approach:

C++




// CPP program to find length of the
// longest prefix which is also suffix
#include <bits/stdc++.h>
using namespace std;
 
// Function to find largest prefix
// which is also a suffix
int largest_prefix_suffix(const std::string
                                      &str)
{
   
  int n = str.length();
   
  // if n is less than 2
  if(n < 2) {
    return 0;
  }
 
  int len = 0;
  int i = 1;
   
  // Iterate i till n
  while(i < n)
  {
     
    // If str[i] is equal to
    // str[len]
    if(str[i] == str[len])
    {
      ++len;
      ++i;
    }
    else
    {
      i = i - len + 1;
      len = 0;
    }
  }
   
  // Return len
  return len>n/2? len/2:len;
 
}
 
// Driver code
int main()
{
     
  string s = "blablabla";
 
  // Function Call
  cout << largest_prefix_suffix(s);
  return 0;
}

C




#include <stdio.h>
#include <string.h>
 
int largest_prefix_suffix(const char* str)
{
    int n = strlen(str);
 
    // If n is less than 2
    if (n < 2) {
        return 0;
    }
 
    int len = 0;
    int i = 1;
 
    // Iterate i till n
    while (i < n) {
        // If str[i] is equal to str[len]
        if (str[i] == str[len]) {
            ++len;
            ++i;
        }
        else {
            i = i - len + 1;
            len = 0;
        }
    }
 
    // Return len
    return len > n / 2 ? len / 2 : len;
}
 
int main()
{
    const char* s = "blablabla";
 
    // Function Call
    printf("%d\n", largest_prefix_suffix(s));
 
    return 0;
}

Java




// Java program to find length of the longest
// prefix which is also suffix
class GFG
{
     
   // Function to find largest prefix
   // which is also a suffix
   static int longestPrefixSuffix(String s)
   {
      int n = s.length();
 
      // If n is less than 2
      if(n < 2) {
          return 0;
      }
 
      int len = 0;
      int i = (n + 1)/2;
 
      // Iterate i till n
      while(i < n)
      {
 
        // If s.charAt(i) is equal to
        // s.charAt(len)
        if(s.charAt(i) == s.charAt(len))
        {
          ++len;
          ++i;
        }
        else
        {
          i = i - len + 1;
          len = 0;
        }
      }
 
      // Return len
      return len;
 
  }
     
    // Driver code
  public static void main (String[] args)
  {
    String s = "abcaabc";
    System.out.println(longestPrefixSuffix(s));
  }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python3 program to find length
# of the longest prefix which
# is also suffix
def longestPrefixSuffix(s) :
    n = len(s)
     
    for res in range(n // 2, 0, -1) :
         
        # Check for shorter lengths
        # of first half.
        prefix = s[0: res]
        suffix = s[n - res: n]
         
        if (prefix == suffix) :
            return res
             
 
    # if no prefix and suffix match
    # occurs
    return 0
     
# Driver Code
if __name__ == "__main__":
    s = "blablabla"
    print(longestPrefixSuffix(s))
 
# This code is contributed by Nikita Tiwari.

C#




// C# program to find length of the longest
// prefix which is also suffix
using System;
 
class GFG
{
     
    // Function to find largest prefix
    // which is also a suffix
    static int longestPrefixSuffix(String s)
    {
        int n = s.Length;
     
        // if n is less than 2
        if(n < 2) {
          return 0;
        }
 
        int len = 0;
        int i = (n + 1)/2;
 
        // Iterate i till n
        while(i < n)
        {
 
          // If str[i] is equal to
          // str[len]
          if(str[i] == str[len])
          {
            ++len;
            ++i;
          }
          else
          {
            i = i - len + 1;
            len = 0;
          }
        }
 
        // Return len
        return len;
    }
     
    // Driver code
    public static void Main ()
    {
        String s = "blablabla";
         
        Console.WriteLine(longestPrefixSuffix(s));
    }
}
 
// This code is contributed by vt_m.

Javascript




<script>
 
// JavaScript program to find length of the longest
// prefix which is also suffix
 
   // Function to find largest prefix
   // which is also a suffix
   function longestPrefixSuffix(s)
   {
      var n = s.length;
 
      // If n is less than 2
      if(n < 2) {
          return 0;
      }
 
      var len = 0;
      var i = (n + 1)/2;
 
      // Iterate i till n
      while(i < n)
      {
 
        // If s[i] is equal to
        // s[len]
        if(s[i] == s[len])
        {
          ++len;
          ++i;
        }
        else
        {
          i = i - len + 1;
          len = 0;
        }
      }
 
      // Return len
      return len;
 
  }
     
// Driver code
var s = "blablabla";
document.write(longestPrefixSuffix(s));
 
// This code contributed by shikhasingrajput
 
</script>

Output

3

Time Complexity: O(n^2)
Auxiliary Space: O(1)

Longest prefix which is also suffix using KMP algorithm:

The idea is to use the preprocessing algorithm KMP search. In the preprocessing algorithm, we build lps array which stores the following values.

lps[i] = the longest proper prefix of pat[0..i] 
which is also a suffix of pat[0..i].

C++




// Efficient CPP program to find length of
// the longest prefix which is also suffix
#include<bits/stdc++.h>
using namespace std;
 
// Returns length of the longest prefix
// which is also suffix and the two do
// not overlap. This function mainly is
// copy computeLPSArray() of in below post
int longestPrefixSuffix(string s)
{
    int n = s.length();
 
    int lps[n];
    lps[0] = 0; // lps[0] is always 0
 
    // length of the previous
    // longest prefix suffix
    int len = 0;
 
    // the loop calculates lps[i]
    // for i = 1 to n-1
    int i = (n+1)/2;
    while (i < n)
    {
        if (s[i] == s[len])
        {
            len++;
            lps[i] = len;
            i++;
        }
        else // (pat[i] != pat[len])
        {
            // This is tricky. Consider
            // the example. AAACAAAA
            // and i = 7. The idea is
            // similar to search step.
            if (len != 0)
            {
                len = lps[len-1];
 
                // Also, note that we do
                // not increment i here
            }
            else // if (len == 0)
            {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    int res = lps[n-1];
 
    // Since we are looking for
    // non overlapping parts.
    return res;
}
 
// Driver program to test above function
int main()
{
    string s = "bbabbabb";
    cout << longestPrefixSuffix(s);
    return 0;
}
 
// Corrected by Nilanshu Yadav

C




#include <stdio.h>
#include <string.h>
 
int longestPrefixSuffix(const char* s)
{
    int n = strlen(s);
    int lps[n];
    lps[0] = 0; // lps[0] is always 0
 
    int len = 0;
    int i = (n + 1) / 2;
 
    while (i < n) {
        if (s[i] == s[len]) {
            len++;
            lps[i] = len;
            i++;
        }
        else {
            if (len != 0) {
                len = lps[len - 1];
            }
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    int res = lps[n - 1];
 
    return res;
}
 
int main()
{
    const char* s = "bbabbabb";
    printf("%d\n", longestPrefixSuffix(s));
    return 0;
}

Java




// Efficient Java program to find length of
// the longest prefix which is also suffix
 
class GFG
{
    // Returns length of the longest prefix
    // which is also suffix and the two do
    // not overlap. This function mainly is
    // copy computeLPSArray() of in below post
    // for-patterns-set-2-kmp-algorithm/
    static int longestPrefixSuffix(String s)
    {
        int n = s.length();
     
        int lps[] = new int[n];
         
        // lps[0] is always 0
        lps[0] = 0;
     
        // length of the previous
        // longest prefix suffix
        int len = 0;
     
        // the loop calculates lps[i]
        // for i = 1 to n-1
        int i = (n+1)/2;
        while (i < n)
        {
            if (s.charAt(i) == s.charAt(len))
            {
                len++;
                lps[i] = len;
                i++;
            }
             
             // (pat[i] != pat[len])
            else
            {
                // This is tricky. Consider
                // the example. AAACAAAA
                // and i = 7. The idea is
                // similar to search step.
                if (len != 0)
                {
                    len = lps[len-1];
     
                    // Also, note that we do
                    // not increment i here
                }
                 
                // if (len == 0)
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
     
        int res = lps[n-1];
     
        // Since we are looking for
        // non overlapping parts.
        return res;
    }
     
    // Driver program
    public static void main (String[] args)
    {
        String s = "bbabbabb";
        System.out.println(longestPrefixSuffix(s));
    }
}
 
// This code is contributed by Anant Agarwal.
// Corrected by Nilanshu Yadav

Python3




# Efficient Python 3 program
# to find length of
# the longest prefix
# which is also suffix
 
# Returns length of the longest prefix
# which is also suffix and the two do
# not overlap. This function mainly is
# copy computeLPSArray() of in below post
def longestPrefixSuffix(s) :
    n = len(s)
    lps = [0] * n   # lps[0] is always 0
  
    # length of the previous
    # longest prefix suffix
    l = 0
     
    # the loop calculates lps[i]
    # for i = 1 to n-1
    i = (n+1)//2;
    while (i < n) :
        if (s[i] == s[l]) :
            l = l + 1
            lps[i] = l
            i = i + 1
         
        else :
 
            # (pat[i] != pat[len])
            # This is tricky. Consider
            # the example. AAACAAAA
            # and i = 7. The idea is
            # similar to search step.
            if (l != 0) :
                l = lps[l-1]
  
                # Also, note that we do
                # not increment i here
             
            else :
 
                # if (len == 0)
                lps[i] = 0
                i = i + 1
  
    res = lps[n-1]
  
    # Since we are looking for
    # non overlapping parts.
    return res;
         
  
# Driver program to test above function
s = "bbabbabb"
print(longestPrefixSuffix(s))
 
 
# This code is contributed
# by Nikita Tiwari.
#Corrected by Nilanshu Yadav

C#




// Efficient C# program to find length of
// the longest prefix which is also suffix
using System;
 
class GFG {
     
    // Returns length of the longest prefix
    // which is also suffix and the two do
    // not overlap. This function mainly is
    // copy computeLPSArray() of in below post
    // for-patterns-set-2-kmp-algorithm/
    static int longestPrefixSuffix(string s)
    {
        int n = s.Length;
     
        int []lps = new int[n];
         
        // lps[0] is always 0
        lps[0] = 0;
     
        // length of the previous
        // longest prefix suffix
        int len = 0;
     
        // the loop calculates lps[i]
        // for i = 1 to n-1
        int i = 1;
        while (i < n)
        {
            if (s[i] == s[len])
            {
                len++;
                lps[i] = len;
                i++;
            }
             
            // (pat[i] != pat[len])
            else
            {
                 
                // This is tricky. Consider
                // the example. AAACAAAA
                // and i = 7. The idea is
                // similar to search step.
                if (len != 0)
                {
                    len = lps[len-1];
     
                    // Also, note that we do
                    // not increment i here
                }
                 
                // if (len == 0)
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
     
        int res = lps[n-1];
     
        // Since we are looking for
        // non overlapping parts.
        return (res > n/2) ? n/2 : res;
    }
     
    // Driver program
    public static void Main ()
    {
        string s = "abcab";
         
        Console.WriteLine(longestPrefixSuffix(s));
    }
}
 
// This code is contributed by vt_m.

Javascript




<script>
 
// Efficient javascript program to find length of
// the longest prefix which is also suffix{
// Returns length of the longest prefix
// which is also suffix and the two do
// not overlap. This function mainly is
// copy computeLPSArray() of in below post
// for-patterns-set-2-kmp-algorithm/
function longestPrefixSuffix(s)
{
    var n = s.length;
 
    var lps = Array.from({length: n}, (_, i) => 0);
     
    // lps[0] is always 0
    lps[0] = 0;
 
    // length of the previous
    // longest prefix suffix
    var len = 0;
 
    // the loop calculates lps[i]
    // for i = 1 to n-1
    var i = 1;
    while (i < n)
    {
        if (s.charAt(i) == s.charAt(len))
        {
            len++;
            lps[i] = len;
            i++;
        }
         
         // (pat[i] != pat[len])
        else
        {
            // This is tricky. Consider
            // the example. AAACAAAA
            // and i = 7. The idea is
            // similar to search step.
            if (len != 0)
            {
                len = lps[len-1];
 
                // Also, note that we do
                // not increment i here
            }
             
            // if (len == 0)
            else
            {
                lps[i] = 0;
                i++;
            }
        }
    }
 
    var res = lps[n-1];
 
    // Since we are looking for
    // non overlapping parts.
    return (res > n/2)? n/2 : res;
}
 
// Driver program
var s = "abcab";
document.write(longestPrefixSuffix(s));
 
 
// This code is contributed by 29AjayKumar
 
 
</script>

PHP




<?php
// Efficient PHP program to find length of
// the longest prefix which is also suffix
 
// Returns length of the longest prefix
// which is also suffix and the two do
// not overlap. This function mainly is
// copy computeLPSArray() of in below post
function longestPrefixSuffix($s)
{
    $n = strlen($s);
 
    $lps[$n] = NULL;
     
    // lps[0] is always 0
    $lps[0] = 0;
 
    // length of the previous
    // longest prefix suffix
    $len = 0;
 
    // the loop calculates lps[i]
    // for i = 1 to n-1
    $i = 1;
    while ($i < $n)
    {
        if ($s[$i] == $s[$len])
        {
            $len++;
            $lps[$i] = $len;
            $i++;
        }
         
        // (pat[i] != pat[len])
        else
        {
             
            // This is tricky. Consider
            // the example. AAACAAAA
            // and i = 7. The idea is
            // similar to search step.
            if ($len != 0)
            {
                $len = $lps[$len-1];
 
                // Also, note that we do
                // not increment i here
            }
             
            // if (len == 0)
            else
            {
                $lps[$i] = 0;
                $i++;
            }
        }
    }
 
    $res = $lps[$n-1];
 
    // Since we are looking for
    // non overlapping parts.
    return ($res > $n/2)? $n/2 : $res;
}
 
    // Driver Code
    $s = "abcab";
    echo longestPrefixSuffix($s);
 
// This code is contributed by nitin mittal
?>

Output

2

Time Complexity: O(n) 
Auxiliary Space: O(n)

Please refer computeLPSArray() of KMP search for an explanation.
 


Like Article
Save Article
Similar Reads
Related Tutorials